Skip to main content
Log in

SQUID-Detected Magnetic Resonance Imaging in Microtesla Magnetic Fields

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London, (1961).

    Google Scholar 

  2. C.P. Slichter, Principles of Nuclear Magnetic Resonance, 3rd ed., Springer Verlag, New York (1990).

    Google Scholar 

  3. P.C. Lauterbur, Nature 242, 190(1973).

    Google Scholar 

  4. P. Mansfield and P.K. Grannell, J. Phys. C Solid State 6, L422(1973).

    Google Scholar 

  5. P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Clarendon, Oxford (1991).

    Google Scholar 

  6. M. Packard and R. Varian, Phys. Rev. 93, 941(1954).

    Google Scholar 

  7. A. Macovski and S. Connolly, Magn. Reson. Med. 30, 221(1993).

    Google Scholar 

  8. J. Stepišnik, V. Eržen, and M. Kos, Magn. Reson. Med. 15, 386(1990).

    Google Scholar 

  9. G.J. Béné, Phys. Rep. 58, 213(1980).

    Google Scholar 

  10. J. Clarke, in SQUID Sensors: Fundamentals, Fabrication and Applications, H. Weinstock (ed.), Kluwer Academic Publishers, Dordrecht (1996).

    Google Scholar 

  11. Ya.S. Greenberg, Rev. Mod. Phys. 70, 175(1998).

    Google Scholar 

  12. R. McDermott, A.H. Trabesinger, M. Mück, E.L. Hahn, Alex Pines, and John Clarke, Science 295, 2247(2002).

    Google Scholar 

  13. R. McDermott, S-K. Lee, B. ten Haken, A.H. Trabesinger, Alex Pines, and John Clarke, unpublished.

  14. H.C. Seton, J.M.S. Hutchison, and D.M. Bussell, Meas. Sci. Technol. 8, 198(1997).

    Google Scholar 

  15. R.C. Jaklevic, J. Lambe, A.H. Silver, and J.E. Mercereau, Phys. Rev. Lett. 12, 159(1964).

    Google Scholar 

  16. B.D. Josephson, Phys. Lett. 1, 251(1962).

    Google Scholar 

  17. F. London, Superfluids, Wiley, New York (1950).

    Google Scholar 

  18. W.C. Stewart, Appl. Phys. Lett. 12, 277(1968).

    Google Scholar 

  19. D.E. McCumber, J. Appl. Phys. 39, 3113(1968).

    Google Scholar 

  20. M.B. Ketchen and J.M. Jaycox, Appl. Phys. Lett. 40, 736(1982).

    Google Scholar 

  21. M. Gurvitch, M.A. Washington, and H.A. Huggins, Appl. Phys. Lett. 42, 472(1983).

    Google Scholar 

  22. C.D. Tesche and J. Clarke, J. Low Temp. Phys. 27, 301(1977).

    Google Scholar 

  23. E.L. Hahn, Phys. Rev. 80, 580(1950).

    Google Scholar 

  24. W.G. Proctor and F.C. Yu, Phys. Rev. 77, 717(1950).

    Google Scholar 

  25. E.L. Hahn and D.E. Maxwell, Phys. Rev. 88, 1070(1952).

    Google Scholar 

  26. C.H. Tseng, G.P. Wong, V.R. Pomeroy, R.W. Mair, D.P. Hinton, D. Hoffmann, R.E. Stoner, F.W. Hersman, D.G. Cory, R.L. Walsworth, Phys. Rev. Lett. 81, 3785(1998).

    Google Scholar 

  27. M. Goldman, Quantum Description of High-Resolution NMR in Liquids, Clarendon, Oxford (1988).

    Google Scholar 

  28. G. Planinšič, J. Stepišnik, and M. Kos, J. Magn. Reson. A110, 170(1994).

    Google Scholar 

  29. H.C. Seton, D.M. Bussell, and J.M.S. Hutchison, Liquified Gas Cryostat, UK Patents GB2331798 and GB2351549.

  30. P.A. Bottomley, J. Phys. E Sci. Instrum. I 14, 1081(1981).

    Google Scholar 

  31. A.K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs (1989).

    Google Scholar 

  32. A.H. Trabesinger, R. McDermott, S-K. Lee, M. Mück, John Clarke, and Alex Pines, J. Phys. Chem., to be published.

  33. J. Vrba, in SQUID Sensors: Fundamentals, Fabrication and Applications, Kluwer Academic, Dordrecht (1996), pp. 117-178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDermott, R., Kelso, N., Lee, SK. et al. SQUID-Detected Magnetic Resonance Imaging in Microtesla Magnetic Fields. Journal of Low Temperature Physics 135, 793–821 (2004). https://doi.org/10.1023/B:JOLT.0000029519.09286.c5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000029519.09286.c5

Navigation