Skip to main content
Log in

Magnetic Anisotropy and de Haas–van Alphen Oscillations in a Bi Microwire Array Studied via Cantilever Magnetometry at Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report measurements of the low temperature (T=0.5 K) oscillatory magnetization in a high-density array of 50μm diameter wires of polycrystalline Bi utilizing a high sensitivity silicon cantilever magnetometer. We find that the magnetic response is strongly anisotropic, being much larger for magnetic field perpendicular than for fields parallel to the wire-axis. We argue that this is a geometric effect caused by the large aspect ratio of the individual microwires in the array. The magnetic response of the microwires is dominated by the light electrons due to the larger cyclotron orbits in comparison with the heavier holes. We find that de Haas–van Alphen oscillations are easily resolved, and discuss the application of this technique to the study of Bi nanowire arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Garcia, Y. H. Kao, and M. Strogin, Phys. Rev. B 5, 2029(1972).

    Google Scholar 

  2. V. B. Sandormirskii, Sov. Phys. JEPT 25, 101(1967).

    Google Scholar 

  3. A. N. Friedman and S. H. Koenig, IBM Res. Develop. Journal 4, 158(1960).

    Google Scholar 

  4. S. Edelman, Zh. Eksp. Teor. Fiz. 68, 257(1975) [Sov. Phys. JETP 41, 125 (1975)].

    Google Scholar 

  5. Y. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 62, 4610(2000).

    Google Scholar 

  6. A. Nikolaeva, D. Gitsu, T. Huber, and L. Konopko, Physica B, in press.

  7. T. E. Huber, M. J. Graf, and C. A. Foss, Jr., J. Mater. Res. 15, 1816(2000).

    Google Scholar 

  8. J. Heremans, C. M. Thrush, Y. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Manfield, Phys. Rev. B 61, 2921(2000).

    Google Scholar 

  9. K. Liu, C. L. Chien, and P. C. Searson, Phys. Rev. 58, R14681(1998).

    Google Scholar 

  10. H. J. Goldsmid, in Electronic Refrigeration, 2nd edn., Pion, London (1986), pp. 104-110.

    Google Scholar 

  11. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727(1993).

    Google Scholar 

  12. M. Dresselhaus et al., Materials Science and Engineering C 23, 129(2003).

    Google Scholar 

  13. J. P. Heremans, C. M. Thrush, D. T. Moreli, and M.-C. Wu, Phys. Rev. Lett. 88, 216801(2002).

    Google Scholar 

  14. T. E. Huber et al., J. Thermoelectricity, in press.

  15. N. B. Brandt, D. V. Gitsu, A. A. Nikolaeva, and Y. G. Ponomarev, Zh. Eksp.Teor. Fiz. 72, 2332(1977) [Sov. Phys. JETP 45, 1226 (1977)]. N. B. Brandt, D. B. Gitsu, V. A. Dolma and Y. G. Ponomarev, Zh. Eksp. Teor. Fiz. 92, 913(1987) [Sov. Phys. JETP 65, 515 (1987)].

    Google Scholar 

  16. H. de Raedt, in Annual Review of Computational Science IV, D. Stauffer (ed.), World Scientific, N.Y. (1996).

    Google Scholar 

  17. C. A. Hoffman, et al., Phys. Rev. B 48, 11431(1993); ibid, 51, 5535 (dy1995).

    Google Scholar 

  18. T. E. Huber, et al., submitted for publication.

  19. T. E. Huber, K. Celestine, and M. J. Graf, Phys. Rev. B 67, 245317(2003).

    Google Scholar 

  20. R. N. Bhargava, Phys. Rev. 156, 785(1967).

    Google Scholar 

  21. F. E. Richards, Phys. Rev. B 8, 2552(1973).

    Google Scholar 

  22. T. E. Huber, M. J. Graf, and C. A. Foss, Jr., J. Mater. Res. 15, 1816(2000).

    Google Scholar 

  23. H. T. Chu and D. D. Franket, Phys. Rev. B 62, 16792(2000).

    Google Scholar 

  24. R. M. Metzger et al., IEEE Trans. Magn. 36, 30(2000); T. E. Huber and L. Luo, Appl. Phys. Lett. 70, 502 (1997).

    Google Scholar 

  25. J. A. Osborn, Phys. Rev. 67, 351(1945).

    Google Scholar 

  26. M. V. Chaparala, O. H. Chung, and M. J. Naughton, AIP Conf. Proc. 273, 407(1993).

    Google Scholar 

  27. C. P. Opeil, A. de Visser, M. J. Naughton, and M. J. Graf, J. Magn. Magn. Mater., in press.

  28. D. Schoenberg and M. Zaki Uddin, Proc. Roy. Soc. A 156, 687(1936). Note the susceptibility values in that work are per mass (cgs) and have been multiplied by 9.8 to obtain the volumetric susceptibility.

    Google Scholar 

  29. R. D. Brown, III, Phys. Rev. B 2, 928(1979).

    Google Scholar 

  30. See, for example, E. N. Adams, II, Phys. Rev. 89, 633(1953).

    Google Scholar 

  31. See, L. M. Roth and P. N. Argyres, in Semiconductors and Semimetals, v. 1, R. K. Willardson and A. C. Beer (eds.), Academic Press, San Diego (1966), pp. 159-202.

    Google Scholar 

  32. F. Y. Yang, et al., Phys. Rev. B 61, 6631(2000).

    Google Scholar 

  33. Since the completion of this work we have acquired a cantilever that is about 50% thinner than the one used here.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, M.J., Opeil, C.P. & Huber, T.E. Magnetic Anisotropy and de Haas–van Alphen Oscillations in a Bi Microwire Array Studied via Cantilever Magnetometry at Low Temperatures. Journal of Low Temperature Physics 134, 1055–1068 (2004). https://doi.org/10.1023/B:JOLT.0000016729.99257.25

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000016729.99257.25

Navigation