Skip to main content
Log in

Structurally Rigid 2,6-distyrylpyridines—A New Class of Fluorescent Dyes. 1. Synthesis, Steric Constitution and Spectral Properties

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A group of structurally rigid analogues of 2,6-distyrylpyridine was synthesised. Molecular geometry of the synthesised dyes in solutions was studied by 1 H-NMR, electronic absorption and fluorescence spectrometry. The spectral data testify all the compounds exist in E-configuration of their styryl residues. The most planar molecular conformation is typical for the compounds with five-membered side aromatic moieties. In the case of pyridines with six-membered aromatic residues steric hindrance results in turning the above mentioned cyclic groups out of the plane of the central pyridine moiety. The violation of planarity in this case is not significant and saves the possibility of π-electronic conjugation in the molecules. The synthesised compounds are characterized by high fluorescence quantum yields in solutions. The electronic absorption spectra of titled pyridines demonstrate low sensitivity to the nature of the substituents introduced into the side aromatic rings. In contrast to this, the fluorescence bands considerably change their position under the influence of electron donor substituents. The fluorescence spectra display substantial positive solvatofluorochromism only in the cases of the dialkylamino-derivatives, especially on going from aprotic solvents to proton donor ones. Generally, the synthesised structurally rigid distyrylpyridine derivatives have prospects for their application as multi-purposes fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Krasovitskii and B. M. Bolotin (1988). Organic Luminescent Materials, VCH GmbH, Weinheim, Germany.

    Google Scholar 

  2. A. P. De Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice (1997). Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515-1566.

    Google Scholar 

  3. B. Valeur and I. Leray (2000). Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3-40.

    Google Scholar 

  4. R. P. Haugland (1998). Handbook of Fluorescent Probes and Research Products. 8th ed., Molecular Probes, Inc.

  5. A. O. Doroshenko, A. V. Grigorovich, E. A. Posokhov, V. G. Pivovarenko, and A. P. Demchenko (1999). Bis-azacrown derivative of di-benzylidene-cyclopentanone as alkali earth ion chelating probe: Spectroscopic properties, proton accepting ability and complex formation with Mg2+ and Ba2+ ions 1. Mol. Eng. 8, 199-215.

    Google Scholar 

  6. A. O. Doroshenko, A. V. Grigorovich, E. A. Posokhov, V. G. Pivovarenko, and A. P. Demchenko (2001). Complex formation between azacrown derivatives of dibenzylidenecyclopentanone and alkali-earth metal ions. Russ. Chem. Bull., Intl. Edn. 50(3), 404-412.

    Google Scholar 

  7. V. G. Pivovarenko, A. V. Klueva, A. O. Doroshenko, and A. P. Demchenko (2000). Bands separation in fluorescence spectra of ketocyanine dyes: Evidence for their complex formation with monohydric alcohols. Chem. Phys. Lett. 325, 389-398.

    Google Scholar 

  8. V. Baliah and R. Jeyaraman (1977). 8-Aryl-3,5-diarylidene-1,2,6,7-tetrahydrodicyclopenta-[b,e]pyridines by the condensation of cyclopentanone with substituted benzaldehydes in the presence of ammonium acetate. Indian J. Chem. B 15, 797-799.

    Google Scholar 

  9. K. Ganapathy and R. Jeyaraman (1979). Mass spectral studies of 8-aryl-3,5-diarylidene-1,2,6,7-tetrahydrodicyclopenta[b,e]pyridines. Indian J. Chem. B 17, 389-390.

    Google Scholar 

  10. R. Jeyaraman and S. Avila (1981). Chemistry of 3-azabicyclo[3.3.1]nonanes. Chem. Rev. 81, 149-174.

    Google Scholar 

  11. D. M. Kneeland, K. Ariga, V. M. Lynch, Ch.-Yu. Huang, and E. V. Anslyn (1993). Bis(alkylguanidinium) receptors for phospohodiesters: Effect of counterions, solvent mixtures, and cavity flexibility on complexation. J. Am. Chem. Soc. 115, 10042-10055.

    Google Scholar 

  12. M. J. S. Dewar, E. G. Zoebich, E. F. Healy, and J. J. P. Stewart (1985). AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902-3908.

    Google Scholar 

  13. A. J. Gordon and R. A. Ford (1972). The Chemist's Companion. A Handbook of Practical Data, Techniques and References, Wiley-Interscience, New York.

    Google Scholar 

  14. W. A. Melhuish (1961). Quantum efficiencies of fluorescence of organic substances effect of soluent and concentration of the fluorescent solute. J. Phys. Chem. 65(2), 229-238.

    Google Scholar 

  15. J. N. Demas and G. A. Crosby (1971). Measurement of photoluminescence quantum yields [Review]. J. Phys. Chem. 75, 991-1025.

    Google Scholar 

  16. A. O. Doroshenko, A. V. Kirichenko, V. G. Mitina, and O. A. Ponomaryov (1996). Spectral properties and dynamics of the excited state structural relaxation of the ortho analogues of POPOP-effective abnormally large Stokes shift luminophores. J. Photochem. Photobiol. A: Chem. 94,15-26.

    Google Scholar 

  17. H. Günther (1984). NMR Spectroscopy. An Introduction, Wiley, Chichester, NY.

    Google Scholar 

  18. M. V. Barnabas, A. Liu, A. D. Trifunac, V. V. Krongauz, and C. T. Chang (1992). Solvent effects on the photochemistry of a ketocya-nine dye and its functional analogue, Michler's ketone. J. Phys. Chem. 96, 212-217.

    Google Scholar 

  19. Z. R. Grabowski, K. Rotkiewicz, A. Semiarczuk, D. J. Cowley, and W. Baumann (1979). Twisted intramolecular charge transfer states (TICT). A new class of excited states with a full charge separation. Nouv. J. Chim. 3(7), 443-453.

    Google Scholar 

  20. E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, and J. A. Miehe (1987). Photophysics of internal twisting. Adv. Chem. Phys. 68,1-98.

    Google Scholar 

  21. P. Borowicz, J. Herbich, A. Kapturkiewicz, M. Opallo, and J. Nowacki (1999). Radiative and nonradiative electron transfer in donor-acceptor phenoxazine and phenothiazine derivatives. Chem. Phys. 249, 49-62.

    Google Scholar 

  22. V. M. Feygelman, J. K. Walker, A. R. Katrizky, and Z. Deda-Szafran (1989). Studies of sterically hindered oxadiazoles as potential fluo-rescent dopants for polymeric scintillators. Chem. Scr. 29, 241-243.

    Google Scholar 

  23. F. Vollmer, W. Rettig, and E. Birckner (1994). Photochemical mech-anisms produsing large fluorescence stokes shofts. J. Fluoresc. 4(1), 65-69.

    Google Scholar 

  24. A. O. Doroshenko, A.V. Kyrychenko, and J. Waluk (2000). Low temperature spectra of the ortho-POPOP molecule: Additional arguments of its flattening in the excited state J. Fluoresc. 10(1), 41-48.

    Google Scholar 

  25. A. O. Doroshenko, A. V. Kyrychenko, V. N. Baumer, A. A. Verezubova, and L. M. Ptyagina (2000). Molecular structure, fluorescent properties and dynamics of excited stste structural relaxation of the oxadiazolis otrho-analog of POPOP with the additional sterical hindrance. J. Mol. Str. 524, 289-296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pivovarenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivovarenko, V.G., Grygorovych, A.V., Valuk, V.F. et al. Structurally Rigid 2,6-distyrylpyridines—A New Class of Fluorescent Dyes. 1. Synthesis, Steric Constitution and Spectral Properties. Journal of Fluorescence 13, 479–487 (2003). https://doi.org/10.1023/B:JOFL.0000008058.34149.df

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000008058.34149.df

Navigation