Skip to main content
Log in

Limited‐Projection Laser Tomography of Combined Gasdynamic Flows

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

The process of reconstruction of local parameters of combined flows from the data of limited‐projection integral measurements with the use of the inverse Radon transform has been simulated numerically. Particular emphasis has been placed on the digital modification of the so‐called speckle tomography making it possible to record with the highest degree of accuracy the initial data on the angles of deflection of laser radiation probing the medium. The errors of such a reconstruction have been computed and analyzed. It has been shown that reconstruction of only relatively simple flows with a comparatively low asymmetry is possible when the number of projections is no larger than four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Merzkirch, Flow Visualization, 2nd ed., Academic Press, Orlando (1987).

    Google Scholar 

  2. M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry. A Practical Guide, Springer, Berlin (1998).

    Google Scholar 

  3. N. Fomin, Speckle Photography in Fluid Mechanics Measurements, Springer, Berlin (1998).

    Google Scholar 

  4. W. Merzkirch, Particle image velocimetry, in: F. Mayinger and O. Feldman (eds.), Optical Measurements. Tech-niques and Applications, Springer, Berlin (2002), pp. 337–394.

    Google Scholar 

  5. S. R. Deans, The Radon Transform and Some of Its Applications, John Wiley & Sons, New York (1983).

    Google Scholar 

  6. I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry and Problems of the Theory of Repre-sentations Related to It [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  7. A. N. Tikhonov and V. A. Arsenin, Methods of Solution of Ill-Posed Problems [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  8. M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  9. G. G. Levin and G. N. Vishnyakov, Optical Tomography [in Russian], Radio i Svyaz', Moscow (1989).

    Google Scholar 

  10. V. V. Pikalov and T. S. Mel'nikova, Tomography of Plasma [in Russian], Nauka, Novosibirsk (1995).

    Google Scholar 

  11. N. Fomin, E. Lavinskaya, and D. Vitkin, Speckle tomography of turbulent flows with density fluctuations, Exp. Fluids, 33, 160–169 (2002).

    Google Scholar 

  12. D. D. Verhoeven, Multiplicative algebraic computed tomographic algorithms for the reconstruction of multidi-rectional interferometric data, Opt. Eng., 32, No. 2, 410–419 (1993).

    Google Scholar 

  13. G. Minerbo, MENT: a maximum entropy algorithm for reconstructing a source from projection data, Comput. Graphics Image Process., 10, 48–68 (1979).

    Google Scholar 

  14. S. Sato, S. J. Norton, M. J. Linzer, et al., Tomographic image reconstruction from limited projections using it-erative revisions in image and transform spaces, Appl. Opt., 20, 395–399 (1981).

    Google Scholar 

  15. S. Bahl and J. A. Liburdy, Three-dimensional image reconstruction using interferometric data from a limited field of view with noise, Appl. Opt., 30, 4218–4226 (1991).

    Google Scholar 

  16. E. Wolf, Three-dimensional structure determination of semitransparent objects from holographic data, Opt. Com-mun., 1, No. 7, 153–156 (1969).

    Google Scholar 

  17. K. Murata, N. Baba, and K. Kunigi, Holographic interferometry with a wide field angle of view and its appli-cations to reconstruction of refractive index fields, Optik, 53, No. 4, 285–294 (1979).

    Google Scholar 

  18. P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, Multiangular absorption diagnostics of a tur-bulent argon–methane jet, J. Energy, 4, No. 2, 70–77 (1980).

    Google Scholar 

  19. S. Cha and C. M. Vest, Tomographic reconstruction of strongly refracting fields and its application to inter-ferometric measurement of boundary layers, Appl. Opt., 20, No. 16, 2787–2794 (1981).

    Google Scholar 

  20. V. D. Zimin and P. G. Frik, Reconstruction of three-dimensional fields of the refractive index from projection shadow patterns, Opt. Spektrosk., 50, Issue 4, 736–743 (1981).

    Google Scholar 

  21. V. A. Komissaruk and N. P. Mende, Investigation of an axisymmetric gasdynamic objects by means of several shear interferometers, Optics Laser Technol., No. 1, 47–49 (1983).

  22. K. E. Bennett, G. W. Faris, and R. L. Byer, Experimental optical fan beam tomography, Appl. Opt., 23, No. 16, 2678–2685 (1984).

    Google Scholar 

  23. R. Shyder and L. Hesselink, Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade, Appl. Opt., 23, No. 20, 3650–3656 (1984).

    Google Scholar 

  24. H. M. Hertz, Experimental determination of 2D flame temperature fields by interferometric tomography, Opt. Commun., 54, No. 3, 131–136 (1985).

    Google Scholar 

  25. G. N. Blinkov, R. I. Soloukhin, and N. A. Fomin, Speckle photography of density gradients in a free flames, Probl. Heat Mass Transfer, 86, 92–97 (1986).

    Google Scholar 

  26. R. I. Soloukhin and N. A. Fomin, Speckle photography of density fields in gas-phase reacting flows, in: Proc. Int. Seminar on Gas Phase Flame Structure, Press Inst. Theor. Appl. Mech., Siberian Branch USSR Acad. Sci., Novosibirsk (1987), pp. 50–55.

    Google Scholar 

  27. G. N. Blinkov, N. A. Fomin, and R. I. Soloukhin, Multi-direction speckle photography of density gradients in a flame, Progr. Astronaut. Aeronaut., 113, 403–416 (1988).

    Google Scholar 

  28. T. C. Liu, W. Merzkirch, and K. Oberste-Lehn, Optical tomography applied to speckle photographic measure-ment of asymmetric flows with variable density, Exp. Fluids, 7, 157–163 (1989).

    Google Scholar 

  29. G. N. Blinkov, N. A. Fomin, M. N. Rolin, R. I. Soloukhin, D. E. Vitkin, and N. L. Yadrevskaya, Speckle to-mography of a gas flame, Exp. Fluids, 8, 72–76 (1989).

    Google Scholar 

  30. L. Hesselink, Digital image processing in flow visualization, Ann. Rev. Fluid Mech., 20, 421–485 (1988).

    Google Scholar 

  31. C. E. Willert and M. Gharib, Digital particle image velocimetry, Exp. Fluids, 10, 181–193 (1991).

    Google Scholar 

  32. P. Meinlschmidt, K. D. Hinsch, and R. S. Sirohi (eds.), Electronic Speckle Pattern Interferometry. Principles and Practice, SPIE Milestone Series, V, MS 132, SPIE Press, Bellingham, Washington (1996).

  33. Y. Z. Song, R. Kulenovic, M. Groll, and Z. Y. Guo, Digital shearing speckle interferometry applied to optical diagnostics in flow, in: SPIE Proc. III. Optical Technology in Fluid, Thermal, and Combustion Flow, 3172-23, SPIE Press, Washington (1997), pp. 246–257.

    Google Scholar 

  34. Y. Z. Song, W. Zhang, Z. Chen, and X. Yao, Real time optical visualization and diagnosis of density field in flow using dynamic digital speckle interferometry, in: CD-ROM Proc. of VSJ-SPIE98 Conf. on Optical Tech-nology and Image Processing in Fluid, Thermal, and Combustion Flow, Paper AB103, Yokogama (1998).

  35. D. Vitkin and W. Merzkirch, Speckle-photographic measurement of unsteady flow processes using a high-speed CCD camera, in: I. Grant and G. Carlomagno (eds.), CD-ROM Proc. of the 8th Int. Symp. on Flow Visualiza-tion (1998), pp. 73.1–73.4.

  36. A. Asseban, M. Lallemand, J.-B. Saulnier, N. Fomin, et al., Digital speckle photography and speckle tomogra-phy in heat transfer studies, Opt. Laser Technol., 32, 583–592 (2000).

    Google Scholar 

  37. N. B. Bazylev, S. M. Vlasenko, E. I. Lavinskaya, and N. A. Fomin, Digital speckle photography of high-speed processes in quasi-real time, Dokl. Nats. Akad. Nauk Belarusi, 45, No. 5, 55–59 (2001).

    Google Scholar 

  38. N. B. Bazylev, E. I. Lavinskaya, S. A. Naumovich, S. P. Rubnikovch, and N. A. Fomin, Laser probing of bio-tissues by the methods of dynamic speckle photography in quasi-real time, Dokl. Nats. Akad. Nauk Belarusi, 47, No. 4, 46–50 (2003).

    Google Scholar 

  39. N. Bazulev, N. Fomin, C. Fuentes, et al., Laser monitor for soft and hard bio-tissue analysis using dynamic speckle photography, Laser Phys., 13, No. 5, 1–10 (2003).

    Google Scholar 

  40. N. Bazulev, N. Fomin, T. Hirano, et al., Quasi-real time bio-tissues monitoring using dynamic laser speckle photography, J. Visualization, 6, No. 4, 371–380 (2003).

    Google Scholar 

  41. E. I. Lavinskaya, E. F. Nogotov, and N. A. Fomin, Scattering of radiation in an anisotropic turbulent medium, Inzh.-Fiz. Zh., 72, No. 1, 96–101 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavinskaya, E.A., Martemianov, S., Saulnier, J. et al. Limited‐Projection Laser Tomography of Combined Gasdynamic Flows. Journal of Engineering Physics and Thermophysics 77, 979–989 (2004). https://doi.org/10.1023/B:JOEP.0000049540.70320.cd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEP.0000049540.70320.cd

Keywords

Navigation