Skip to main content
Log in

New Schemes of Digital Speckle Photography

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper presents a review and an analysis of the development of speckle photography from the first experiments performed at the National Physical Laboratory of Great Britain up to the present time. The possibility of diagnosing turbulent and three-dimensional flows by the speckle photography methods has been shown. The single-exposure scheme of speckle photography has been analyzed and the possibility of using multiaspect speckle photography in reconstructive tomography of complex three-dimensional flows has been shown. Methods based on speckle technologies such as Talbot interferometry, PIV and BOS techniques have been analyzed. Particular consideration is given to the application of new measuring technologies in diagnosing turbulent flows and reconstructive tomography of three-dimensional flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Goodman, Statistical properties of laser speckle patterns, Stanford Electronics Lab., Technical Report No. 2303−1 (1963).

  2. J. M. Burch and J. M. J. Tokarski, Production multiple beam fringes from photographic scatterers, Opt. Acta, 15, No. 2, 101–111 (1968).

    Article  Google Scholar 

  3. E. Archbold, J. M. Burch, and A. E. Ennos, Recording of in-plane surface displacement by double-exposure speckle photography, Opt. Acta, 17, No. 12, 883–898 (v).

  4. E. Archbold and A. E. Ennos, Displacement measurement from double-exposure laser photographs, Opt. Acta, 19, No. 4, 253–271 (1972).

    Article  Google Scholar 

  5. R. K. Erf (Ed.), Speckle Metrology, Academic Press, New York (1978).

    Google Scholar 

  6. U. Köpf, Application of speckling for measuring the deflection of laser light by phase objects, Opt. Commun., 5, No. 5, 347–350 (1972).

    Article  Google Scholar 

  7. S. Debrus, M. Françon, C. P. Grover, M. May, and M. L. Roblin, Ground glass differential interferometer, Appl. Opt., 11, No. 4, 853–857 (1972).

    Article  Google Scholar 

  8. U. Wernekinck, W. Merzkirch, and N. Fomin, Measurement of light deflection in a turbulent density field, Exp. Fluids, 3, No. 4, 206−208 (1985).

    Article  Google Scholar 

  9. W. Merzkirch, Flow Visualization, 2nd edn., Academic Press, Orlando (1987).

    MATH  Google Scholar 

  10. N. A. Fomin, Speckle Photography of Gas Flows [in Russian], Nauka i Tekhnika, Minsk (1989).

    Google Scholar 

  11. N. Fomin, W. Merzkirch, D. Vitkin, and H. Wintrich, Visualization of turbulence anisotropy by single exposure speckle photography, Exp. Fluids, 20, No. 6, 476–479 (1996).

    Article  Google Scholar 

  12. N. A. Fomin and P. P. Khramtsov, Speckle frame- and streak-cinematography of temperature field microstructure in nonsteady turbulent fields, in: Optical Methods and Data Processing in Heat and Fluid Flow, IMex-Press, London (1996), pp. 489–496.

  13. J. D. Briers and S. Webster, Laser speckle contrast analysis (LASCA): A non-scanning, full-field technique for monitoring capillary blood flow, J. Mod. Opt., 1, No. 2, 174–179 (1996).

    Google Scholar 

  14. D. Vitkin, W. Merzkirch, and N. Fomin, Quantitative visualization of the change of turbulence structure caused by a normal shock wave, J. Visualiz., 1, No. 1, 29–35 (1998).

    Article  Google Scholar 

  15. N. Fomin, Speckle Photography for Fluid Mechanics Measurements, Springer Verlag, Berlin (1998).

    Book  MATH  Google Scholar 

  16. N. A. Fomin, E. I. Lavinskaja, W. Merzkirch, and D. Vitkin, Speckle photography applied to statistical analysis of turbulence, Special Issue of Optics and Laser Technology, 31, 13–22 (1999).

    Article  Google Scholar 

  17. N. Fomin, C. Fuentes, J.-B. Saulnier, and J.-L. Tuhault, Tissue blood flux monitoring by laser speckle photography, J. Laser Phys., 11, No. 3, 525–529 (2001).

    Google Scholar 

  18. C. A. Greated, J. A. Cosgrove, and N. A. Fomin, Quantitative visualization of ultrasonic acoustic waves by means of digital laser speckle technologies, J. Eng. Phys. Thermophys., 81, No. 2, 242–252 (2008).

    Article  Google Scholar 

  19. N. B. Bazylev, H. Galiano, O. V. Meleeva, S. Martemianov, O. G. Penyazkov, and N. Fomin, PEMFCs flow microstructure analysis by advanced speckle technologies, Int. J. Heat Mass Transf., 54, Nos. 11−12, 2341–2348 (2011).

    Article  MATH  Google Scholar 

  20. V. N. Croshko, N. A. Fomin, and R. I. Soloukhin, Population inversion and gain distribution in supersonic mixed flow systems, Acta Astronaut., 2, Nos. 4–5, 929–939 (1975).

    Article  Google Scholar 

  21. N. Fomin, Speckle frame- and streak-cinematography: An insight into the structure and development of turbulence, Arch. Combust., 15, Nos. 3/4, 227–239 (1995).

    Google Scholar 

  22. G. N. Blinkov, N. A. Fomin, and R. I. Soloukhin, Multidirectional speckle photography of density gradients in a flame, Prog. Astronaut. Aeronaut., Vol. 133. Dynamics of Reactive Systems. Part I: Flames, AIAA, Inc., Washington (1988), pp. 403–416.

    Google Scholar 

  23. G. N. Blinkov, N. A. Fomin, M. N. Rolin, R. I. Soloukhin, D. E. Vitkin, and N. L. Yadrevskaya, Speckle tomography of a gas flame, Exp. Fluids, 8, Nos. 1–2, 72–76 (1989).

    Article  Google Scholar 

  24. G. N. Blinkov, N. A. Fomin, and D. E. Vitkin, Speckle tomography of gas flows, in: Atlas of Visualization, Vol. 1, Chapter 11, Pergamon Press, Oxford (1993), pp. 171–182.

    Google Scholar 

  25. N. Fomin, E. Lavinskaya, and D. Vitkin, Speckle tomography of turbulent flows with density fluctuations, Exp. Fluids, 33, No. 1, 160–169 (2002).

    Article  Google Scholar 

  26. M. V. Doroshko, P. P. Khramtsov, O. G. Penyazkov, and I. A. Shikh, Measurement of admixture concentration fluctuation in a turbulent shear flow using an averaged Talbot image, Exp. Fluids, 44, No. 3, 461−468 (2008).

    Article  Google Scholar 

  27. M. V. Doroshko, O. G. Penyazkov, P. P. Khramtsov, I. A. Shikh, Measurement of concentration pulsations in a shear turbulent flow by the method of averaged Talbot images, J. Eng. Phys. Thermophys., 81, No. 1, 48–53 (2008).

    Article  Google Scholar 

  28. J. M. Burch and C. Forno, A high sensitivity moiré grid technique for studying deformation in large objects, Opt. Eng., 14, No. 2, 178–185 (1975).

    Article  Google Scholar 

  29. C. Forno, White-light speckle photography for measuring deformation, strain and shape, Opt. Laser Technol., 7, No. 5, 217–221 (1975).

    Article  Google Scholar 

  30. F. P. Chiang and A. Asundi, White light speckle method of experimental strain analysis, Appl. Opt., 18, No. 4, 408–411 (1979).

    Article  Google Scholar 

  31. G. Cloud, R. Falco, R. Radke, and J. Peiffer, Non-coherent light photography for measurement of fluid velocity field. SPIE Proc., 243, 150−157 (1980).

    Article  Google Scholar 

  32. E. Bernabeu, J. C. Amaré, and M. P. Arroyo, White-light speckle method of measurement of flow velocity distribution, Appl. Opt., 21, No. 14, 2583–2586 (1982).

    Article  Google Scholar 

  33. M. Suzuki, K. Hosoi, S. Toyooka, and M. Kawahashi, White-light speckle method for obtaining an equi-velocity map of a whole flow field, Exp. Fluids, 1, No. 2, 79–81 (1983).

    Article  Google Scholar 

  34. G. H. Kaufmann, Double pulsed white-light speckle photography, Appl. Opt., 23, 194–196 (1984).

    Article  Google Scholar 

  35. A. K. Asundi, White light in speckle metrology, in: R. S. Sirohi (Ed.), Speckle Metrology, Marcel Dekker, Inc., New York (1993), pp. 325–371.

    Google Scholar 

  36. G. E. A. Meier, Hintergrund-Schlierenverfahren, Deutsche Patentanmeldung, DE 19942856 A1 (1999).

  37. M. Raffel, H. Richard, and G. E. A. Meier, On the applicability of background oriented optical tomography for large scale aerodynamic investigations, Exp. Fluids., 28, No. 5, 477–481 (2000).

    Article  Google Scholar 

  38. L. Venkatakrishnan and G. E. A. Meier, Density measurements using the background oriented schlieren technique, Exp. Fluids, 37, No. 2, 237–247 (2004).

    Article  Google Scholar 

  39. L. Venkatakrishnan and P. Suriyanarayanan, Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data, Exp. Fluids, 47, No. 3, 463–473 (2009).

    Article  Google Scholar 

  40. B. R. Sutherland, S. B. Dalziel, G. O. Hughes, and P. F. Linden, Visualization and measurement of internal waves by "synthetic schlieren," Part 1: Vertically oscillating cylinder, J. Fluid Mech., 390, 93–126 (1999).

    Article  MATH  Google Scholar 

  41. S. Dalziel, G. Hughes, and B. Sutherland, Whole-field density measurements by "synthetic schlieren," Exp. Fluids, 28, No. 4, 322–335 (2000).

    Article  Google Scholar 

  42. F. Moisy, M. Rabaud, and K. Salsac, A synthetic schlieren method for the measurement of the topography of a liquid interface, Exp. Fluids, 46, No. 6, 1021–1036 (2009).

    Article  Google Scholar 

  43. N. M. Skornyakova, Application of the shadow background method. Optical methods for studying flows, in: Proc. 10th Int. Sci.-Tech. Conf., Izd. MÈI, Moscow (2009), pp. 66–71.

  44. E. M. Popova, Processing of pictures obtained by the shadow background method by constructing the field of directions, Opt. Zh., 71, No. 9, 8–11 (2004).

    Google Scholar 

  45. M. J. Hargather and G. S. Settles, Natural-background-oriented schlieren, Exp. Fluids, 48, No. 1, 59–68 (2010).

    Article  Google Scholar 

  46. J. Jin, I. V. Mursenkova, N. N. Sysoev, N. A. Vinnichenko, I. A. Znamenskaya, and F. N. Glazyrin, Experimental investigation of blast waves from plasma sheet using background oriented schlieren and shadow method, J. Flow Visual. Image Process., 18, No. 4, 311–328 (2011).

    Article  Google Scholar 

  47. G. Elsinga, B. Oudheusden, F. Scarano, and D. Andwatt, Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren, Exp. Fluids, 36, No. 2, 309–325 (2004).

    Article  Google Scholar 

  48. F. Leopold, The application of the colored background oriented schlieren technique (CBOS) to free-flight and in-flight measurements, J. Flow Visual. Image Process., 16, No. 4, 279−293 (2009).

    Article  Google Scholar 

  49. M. Ota, K. Hamada, H. Kato, and K. Maeno, Computed tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique, Meas. Sci. Technol., 22, Paper 104011 (2011).

  50. T. Mizukaki, K. Wakabayashi, T. Matsumura, and N. Nakayama, Quantitative visualization of open-air explosions by background-oriented schlieren, in: CD-Proc. 15th Int. Symp. on Flow Visualization, Minsk, Belarus (2012), Paper No. 164.

  51. V. Todoroff, A. Plyer, G. Le Besnerais, F. Champagnat, D. Donjat, F. Micheli, and P. Millan, 3D Reconstruction of the density field of a jet using synthetic BOS images, in: CD-Proc. 15th Int. Symp. on Flow Visualization, Minsk, Belarus (2012), Paper No. 052.

  52. A. H. Meier and T. Roesgen, Improved background oriented schlieren imaging using laser speckle illumination, Exp. Fluids, 54, No. 6, 1–6 (2013).

    Article  Google Scholar 

  53. D. B. Barker and M. E. Fourney, Measuring fluid velocities with speckle pattern, Opt. Lett., 1, 135–137 (1977).

    Article  Google Scholar 

  54. T. D. Dudderar and P. G. Simpkins, Laser speckle photography in a fluid medium, Nature, 270, 45–47 (1977).

    Article  Google Scholar 

  55. R. Grousson and S. Mallick, Study of flow patterns in a fluid by scattered laser light, Appl. Opt., 16, 2334–2336 (1977).

    Article  Google Scholar 

  56. J. P. Lallement, R. Desailly, and C. Froehly, Mésure de vitesse dans un liquide par diffusion cohérente, Acta Astron., 4, 343–356 (1977).

    Article  Google Scholar 

  57. R. Meynart, Equal velocity fringes in a Rayleigh–Benard flow by a speckle method, Appl. Opt., 19, No. 9, 1385−1386 (1980).

    Article  Google Scholar 

  58. R. Meynart, P. G. Simpkins, and T. D. Dudderar, Speckle measurements of convection in a liquid cooled from above, J. Fluid Mech., 182, 235–254 (1987).

    Article  Google Scholar 

  59. R. J. Adrian, Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: Speckle velocimetry vs particle image velocimetry, Appl. Opt., 23, No. 11, 1690–1691 (1984).

    Article  Google Scholar 

  60. R. J. Adrian, Twenty years of particle image velocimetry, Exp. Fluids, 39, No. 2, 159–169 (2005).

    Article  Google Scholar 

  61. C. Brossard, J.-C. Monnier, P. Barricau, F.-X. Vandernoot, Y. Le Sant, and F. Champagnat, Principles and applications of particle image velocimetry. Optical diagnostics of flows, ONERA J. Aerospace Lab., Issue 1, AL01-03, 1–11 (2009).

  62. Sergey Shimchenko, Vladimir Leschevich, Oleg Penyazkov, and Nikita Fomin, Visualization and analysis of the burning particles motion in combustion chamber of a rapid compression machine, J. Flow Visual. Image Process., 23, Nos. 1–2, 1–10 (2016).

    Google Scholar 

  63. J. Westerweel, Digital Particle Image Velocimetry. Theory and Application, Delft University Press, Delft (1993).

    Google Scholar 

  64. M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry. A Practical Guide, Springer-Verlag, Berlin (1998).

    Book  Google Scholar 

  65. Marcus Raffel, Christian E. Willert, Steven Wereley, and Jürgen Kompenhans, Particle Image Velocimetry — A Practical Guide (Experimental Fluid Mechanics), 2nd edn., Springer-Verlag, Berlin (2007).

    Google Scholar 

  66. A. Schroeder and C. E. Willert (Eds.), Particle Image Velocimetry, Springer-Verlag, Berlin (2008).

    Google Scholar 

  67. Ronald J. Adrian and Jerry Westerweel, Particle Image Velocimetry. Cambridge Aerospace Series (Book No. 30), Cambridge University Press (2010).

  68. N. B. Bazylev and N. A. Fomin, Quantitative Visualization of Flows Based on Speckle Technologies [in Russian], Belaruskaya Nauka, Minsk (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 4, pp. 999–1015, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penyazkov, O.G., Fomin, N.A. New Schemes of Digital Speckle Photography. J Eng Phys Thermophy 91, 941–956 (2018). https://doi.org/10.1007/s10891-018-1820-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1820-1

Keywords

Navigation