Skip to main content
Log in

Analysis of Turbulence Models and Investigation of the Structure of the Flow in a Hydrocyclone

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A numerical investigation of the structure of the flow in a hydrocyclone has been carried out on the basis of Reynolds equations with the use of various models of turbulence: the k–ε model, the k–ε RNG (ReNormalization Group) model, the k–ε model corrected for the Richardson number Ri, and the k–ω model. It is shown that the distributions of the velocities and pressure in a hydrocyclone obtained with the k–ε Ri model, in which the influence of the rotation of the flow on the processes of generation/dissipation of turbulence and the anisotropy of the turbulent pulsations are taken into account, coincide most closely with the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Matvienko, J. Dück, and Th. Neeβe, Numerische Simulation der Strömungen in einem Hydrozyklon, in: Book of Abstracts of the Annual Meeting “Gesellschaft fur Angewandte Mathematik und Mechanik,” Bremen, April 6–9 (1998), p. 85.

  2. O. Matvienko, J. Dück, and Th. Neeβe, A mathematical simulation of hydrocyclone hydrodynamics, in: M. Sommerfeld (ed.), Proc. 9th Workshop on Two-Phase Flow Predictions, Merseburg (1999), pp. 194–202.

  3. O. Matvienko, J. Dück, and Th. Neeβe, Hydrodynamics and particle separation in the hydrocyclone, in: Proc. 2nd Int. Symp. on Two-Phase Flow Predictions and Experimentation, Pisa, Italy, May 23–26, 1999, Pisa (1999), pp. 923–928.

  4. J. Dück, O. V. Matvienko, and Th. Neeβe, Modeling of hydrodynamics and separation in a hydrocyclone, Teor. Osn. Khim. Tekhnol., 34,No. 5, 478–488 (2000).

    Google Scholar 

  5. J. Dueck, O. Matvienko, and Th. Neeβe, Numerical modelling of hydrocyclone dynamics for process control, in: Proc. 14th Annual Techn. Conf. and Exposition “Science and Technology of Filtration and Separation for the 21th Century,” Tampa, Florida, May 1–4, 2001, pp. 153–167.

  6. B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Comput. Meth. Appl. Mech. Eng., 3, 269–289 (1974).

    Google Scholar 

  7. V. Yakhot and S. A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput., 1, 1–51 (1986).

    Google Scholar 

  8. F. Boysan, Numerical modelling of cyclone separation, Selected Topics in Two-Phase Flow, Lectures Series, 9, 137–158, Trondheim, Norway (1984).

  9. D. C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., 26,No. 11, 1299–1310 (1988).

    Google Scholar 

  10. T. C. Monredon, K. T. Hsien, and R. K. Rajamani, Fluid flow model of the hydrocyclone: An investigation of device dimensions, Int. J. Mineral Process., 35, 65–83 (1992).

    Google Scholar 

  11. S. Patankar, Numerical Heat Transfer and Fluid Flow [Russian translation], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  12. L. Svarovsky, Hydrocyclones, London (1984).

  13. A. I. Povarov, Hydrocyclones at Concentrating Mills [in Russian], Nedra, Moscow (1978).

    Google Scholar 

  14. F. J. Fontein, Wirkung des Hydrozyklons und des bogensiebs sowiederen Anwendungen, Aufbereitungs Technik, No. 3, S. 85–89 (1961).

    Google Scholar 

  15. H. Trawinski, Der Hydrozyklon als Hilfsgerät zur Grundstoffveredelung, Cheme-Ing. Techn., 25,No. 6, 331–340 (1953).

    Google Scholar 

  16. A. N. Izmailova, Study of Hydrocyclone Operation on Suspensions of Polymers, Candidate Dissertation (in Engineering), Leningrad (1969).

  17. N. Joshioka and J. Hotta, Liquid cyclone as hydraulic classifier, Chem. Eng. Japan, 19, 632–635 (1955).

    Google Scholar 

  18. G. Tarjan, Bewegungsvorgange im Hydrozyklon und seine Anwendung in der Schwerstubeaufbereitung, Neue Hutte, 4,No. 2, 65–74 (1959).

    Google Scholar 

  19. V. K. Shchukin and A. A. Khalatov, Heat Transfer, Mass Transfer, and Hydrodynamics of Swirling Flows in Axisymmetric Channels [in Russian], Mashinostroenie, Moscow (1982).

    Google Scholar 

  20. D. F. Kellsal, A further study of the hydraulic cyclone, Chem. Eng. Sci., 30, 254–272 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matvienko, O.V. Analysis of Turbulence Models and Investigation of the Structure of the Flow in a Hydrocyclone. Journal of Engineering Physics and Thermophysics 77, 316–323 (2004). https://doi.org/10.1023/B:JOEP.0000028510.57907.87

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEP.0000028510.57907.87

Keywords

Navigation