Skip to main content
Log in

Anisotropic characteristics of the kraichnan direct cascade in two-dimensional hydrodynamic turbulence

  • Nonlinear Phenomena
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The statistical characteristics of the Kraichnan direct cascade for two-dimensional hydrodynamic turbulence are numerically studied (with spatial resolution 8192 × 8192) in the presence of pumping and viscous-like damping. It is shown that quasi-shocks of vorticity and their Fourier partnerships in the form of jets introduce an essential influence in turbulence leading to strong angular dependencies for correlation functions. The energy distribution as a function of modulus k for each angle in the inertial interval has the Kraichnan behavior, ~k –4, and simultaneously a strong dependence on angles. However, angle average provides with a high accuracy the Kraichnan turbulence spectrum E k = C Kη2/3k–3, where η is the enstrophy flux and the Kraichnan constant C K ≃ 1.3, in correspondence with the previous simulations. Familiar situation takes place for third-order velocity structure function S L3 which, as for the isotropic turbulence, gives the same scaling with respect to the separation length R and η, S L3 = C 3ηR 3, but the average over the angles and time differs from its isotropic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kraichnan, Phys. Fluids 11, 1417 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. K. Lilly, J. Fluid Mech. 45, 395 (1971).

    Article  ADS  MATH  Google Scholar 

  3. J. C. McWilliams, J. Fluid Mech. 146, 21 (1984).

    Article  ADS  MATH  Google Scholar 

  4. S. Kida, J. Phys. Soc. J. 54, 2840 (1985).

    Article  ADS  Google Scholar 

  5. M. E. Brachet, M. Meneguzzi, and P. L. Sulem, Phys. Rev. Lett. 57, 683 (1986).

    Article  ADS  Google Scholar 

  6. M. E. Brachet, M. Meneguzzi, and P. L. Sulem, J. Fluid Mech. 194, 333 (1988).

    Article  ADS  Google Scholar 

  7. R. Benzi, S. Patarnello, and P. Santangelo, Europhys. Lett. 3, 811 (1986).

    Article  ADS  Google Scholar 

  8. B. Legras, B. Santangelo, and R. Benzi, Europhys. Lett. 5, 37 (1988)

    Article  ADS  Google Scholar 

  9. B. Santangelo, R. Benzi, and B. Legras, Phys. Fluids A 1, 1027 (1989).

    Article  ADS  Google Scholar 

  10. K. Okhitani, Phys. Fluids A 3, 1598 (1991).

    Article  ADS  Google Scholar 

  11. E. A. Kuznetsov, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Phys. Fluids 19, 105110 (2007).

    Article  ADS  Google Scholar 

  12. P. G. Saffman, Stud. Appl. Math. 50, 49 (1971).

    Google Scholar 

  13. W. Wolibner, Math. Z. 37, 698 (1933)

    Article  MathSciNet  Google Scholar 

  14. V. I. Yudovich, 3, 1407 (1963)

  15. T. Kato, Arch. Rat. Mech. Anal. 25, 189 (1967).

    Article  Google Scholar 

  16. E. A. Kuznetsov, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Theor. Comput. Fluid Dyn. 24, 253 (2010).

    Article  MATH  Google Scholar 

  17. A. N. Kudryavtsev, E. A. Kuznetsov, and E. V. Sereshchenko, JETP Lett. 96, 699 (2013).

    Article  ADS  Google Scholar 

  18. E. A. Kuznetsov, JETP Lett. 80, 83 (2004).

    Article  ADS  Google Scholar 

  19. T. Gotoh, Phys. Rev. E 57, 298491 (1998).

    Article  MathSciNet  Google Scholar 

  20. N. Schorghofer, Phys. Rev. E 61, 657277 (2000).

    Google Scholar 

  21. E. Lindborg and K. Alvelius, Phys. Fluids 12, 945 (2000).

    Article  ADS  MATH  Google Scholar 

  22. E. Lindborg and A. Vallgren, Phys. Fluids 22, 091704 (2010).

    Article  ADS  Google Scholar 

  23. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge Univ. Press, Cambridge, UK, 1995).

    MATH  Google Scholar 

  24. D. Bernard, Phys. Rev. E 60, 618487 (1999).

    Article  Google Scholar 

  25. E. Lindborg, J. Fluid Mech. 388, 259 (1999).

    Article  ADS  MATH  Google Scholar 

  26. V. Yakhot, Phys. Rev. E 60, 5544 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Boffetta and R. E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  28. E. A. Kuznetsov and V. P. Ruban, JETP Lett. 67, 1076 (1998), Phys. Rev. E 61, 831 (2000).

    Article  ADS  Google Scholar 

  29. E. A. Kuznetsov, JETP Lett. 76, 346 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kuznetsov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, E.A., Sereshchenko, E.V. Anisotropic characteristics of the kraichnan direct cascade in two-dimensional hydrodynamic turbulence. Jetp Lett. 102, 760–765 (2015). https://doi.org/10.1134/S0021364015230083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015230083

Keywords

Navigation