Skip to main content
Log in

Fractal Approach to Description of Viscoelastic Properties of Liquids in the Region of Transition to the Glassy State

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Based on the notion of the multifractal nature of liquids in the region of their transition to the glassy state we give a description of viscoelastic properties of the media studied in terms of the dynamic shear modulus and modulus of losses and the coefficient of shear viscosity whose estimate (1013 P) corresponds to a value typical of glass. The relation between the memory function and the Kohlrausch function is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. M. Bartenev and D. S. Sanditov, Relaxation Processes in Glass-Like Systems[in Russian], Novosibirsk (1986).

  2. G. M. Bartenev and S. Ya. Frenkel', Physics of Polymers[in Russian], Leningrad (1990).

  3. A. R. Ubbelohde, Melting and Crystal Structure[Russian translation], Moscow (1969).

  4. P. M. Chaikin and T. C. Lubenski, Principles of Condensed Matter Physics, Cambridge (1995).

  5. M. Mezard, Statistical Physics of the Glass Phase, Arxiv: cond-mat/0110363, 1, 1-10 (2001).

    Google Scholar 

  6. E. A. Di Marzio, The entropy theory of glass formation after 40 years, Comput. Mater. Sci., 4, 317-324 (1995).

    Google Scholar 

  7. S. G. Samko, I. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Certain Applications of Them[in Russian], Minsk (1987).

  8. I. M. Gel'fand and G. E. Shilov, Generalized Functions and Operations with Them[in Russian], Moscow (1958).

  9. T. D. Shermergor, Theory of Elasticity of Microhomogeneous Media[in Russian], Moscow (1977).

  10. R. R. Nigmatullin, The Fractional integral and physical interpretation of it, Teor. Mat. Fiz., 90, No. 3, 354-368 (1992).

    Google Scholar 

  11. H. Bateman and A. Erdelyi, Higher Transcendental Functions[Russian translation], Vol. 3, Moscow (1967).

  12. U. Buchenau, Mechanical Relaxation in Glasses and at Glass Transition, Arxiv: cond-mat/0008280, 1, 1-13 (2000).

    Google Scholar 

  13. M. F. Shlesinger and E. W. Montroll, On the Williams-Watts function of dielectric relaxation, Proc. Natl. Acad. USA, 81, 1250-1283 (1984).

    Google Scholar 

  14. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Andersen, Models of hierarchically constrained dynamics for glassy relaxation, Phys. Rev. Lett., 53, No. 10, 958-961 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemtsov, V.B. Fractal Approach to Description of Viscoelastic Properties of Liquids in the Region of Transition to the Glassy State. Journal of Engineering Physics and Thermophysics 76, 1271–1276 (2003). https://doi.org/10.1023/B:JOEP.0000012031.70401.13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEP.0000012031.70401.13

Keywords

Navigation