Skip to main content
Log in

Inhibition of Mouth Skeletal Muscle Relaxation by Flavonoids of Cistus ladanifer L.: A Plant Defense Mechanism Against Herbivores

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Cistus ladanifer exudate is a potent inhibitor of the sarcoplasmic reticulum Ca2+-ATPase (Ca2+-pump) of rabbit skeletal muscle, a well- established model for active transport that plays a leading role in skeletal muscle relaxation. The low concentration of exudate needed to produce 50% of the maximum inhibition of the sarcoplasmic reticulum Ca2+-ATPase activity, 40–60 μg/ml, suggests that eating only a few milligrams of C. ladanifer leaves can impair the relaxation of the mouth skeletal muscle of herbivores, as the exudate reaches up to 140 mg/g of dry leaves in summer season. The flavonoid fraction of the exudate accounts fully for the functional impairment of the sarcoplasmic reticulum produced by the exudate (up to a dose of 250–300 μg/ml). The flavonoids present in this exudate impair the skeletal muscle sarcoplasmic reticulum function at two different levels: (i) by inhibition of the Ca2+-ATPase activity, and (ii) by decreasing the steady state ATP-dependent Ca2+-accumulation. Among the exudate flavonoids, apigenin and 3,7-di-O-methyl kaempferol are the most potent inhibitors of the skeletal muscle sarcoplasmic reticulum. We conclude that the flavonoids of this exudate can elicit an avoidance reaction of the herbivores eating C. ladanifer leaves through impairment of mouth skeletal muscle relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andersen, J. P. 1989. Monomer-oligomer equilibrium of sarcoplasmic reticulum Ca-ATPase and the role of subunit interaction in the Ca2+ pump mechanism. Biochim. Biophys. Acta 98:47–72.

    Google Scholar 

  • Antollini, S. S., Soto, M. A., Bonini de Romanelli, I., GutiÉrrez-Merino, C., Sotomayor, P., and Barrantes, F. J. 1996. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. J. Biophys. 70:1275–1284.

    Google Scholar 

  • Appel, H. M. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19:1521–1552.

    Google Scholar 

  • Arinafril and Suwandi. 2001. Use of plant extracts as an environmentally friendly pest management methods. SEAG Symposium, Los Baños, The Philippines.

  • Chaves, N. and Escudero, J. C. 1999. Variation of flavonoid synthesis induced by ecological factors, pp. 267–285, in K. Inderjit, M. N. Dakshini, and F. L. Chester (eds.). Principles and Practices in Plant Ecology. Allelochemicals Interactions. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Chaves, N., Escudero, J. C., and Gutierrez-Merino, C. 1993. Seasonal variation of exudate of Cistus ladanifer. J. Chem. Ecol. 19:2577–2591.

    Google Scholar 

  • Chaves, N., Escudero, J. C., and GutiÉrrez-Merino, C. 1997. Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J. Chem. Ecol. 23:579–603.

    Google Scholar 

  • Chaves, N., Rios, J. J., GutiÉrrez-Merino, C., Escudero, J. C., and Olias, J. M. 1998. Analysis of secreted flavonoids of Cistus ladanifer L. by high-performance liquid chromatography-particle beam mass spectrometry. J. Chromatogr. A 799:111–115.

    Google Scholar 

  • Chaves, N., Sosa, T., and Escudero, J. C. 2001. Plant growth inhibiting flavonoids in exudate of Cistus ladanifer L. and in associated soils. J. Chem. Ecol. 27:623–631.

    PubMed  Google Scholar 

  • Coulson, C. J., King, D. J., and Wiseman, A. 1984. Chemotherapeutic and agrochemical applications of cytochrome-P450 ligands. Trends Biochem. Sci. 9:446–449.

    Google Scholar 

  • Cuenda, A., Henao, F., and GutiÉrrez-Merino, C. 1990. Distances between functional site of the (Ca2+ + Mg2+)-ATPase from sarcoplasmic using Ca2+ as a spectroscopic ruler. Eur. J. Biochem. 194:663–670.

    PubMed  Google Scholar 

  • Cuenda, A., Henao, F., Nogues, M., and GutiÉrrez-Merino, C. 1994. Quantification and removal of glycogen phosphorylase and other enzymes associated with sarcoplasmic reticulum membrane preparations. Biochim. Biophys. Acta 1194:35–43.

    PubMed  Google Scholar 

  • de Meis, L. and Vianna, A. L. 1979. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 48:275–292.

    PubMed  Google Scholar 

  • Entman, M. L. and Van Winkle, W. B. 1986. Sarcoplasmic Reticulum in Muscle Physiology. CRC Press, Boca Ratón, FL.

    Google Scholar 

  • Fernandez-Salguero, P., Henao, F., Laynez, J., and Gutierrez-Merino, C. 1990. Modulation of the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by pentobarbital. Biochim. Biophys. Acta 1022:33–40.

    PubMed  Google Scholar 

  • Fleischer, S. and Inui, M. 1989. Biochemistry and biophysics of excitation-contraction coupling. Annu. Rev. Biophys. Biophys. Chem. 18:333–364.

    PubMed  Google Scholar 

  • Fung, B. K. and Stryer, L. 1978. Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248.

    PubMed  Google Scholar 

  • GutiÉrrez-Merino, C., Molina, A., Escudero, B., Diez, A., and Laynez, J. 1989. Interaction of local anesthetics dibucaine and tetracaine with sarcoplasmic reticulum membranes. Differential scanning calorimetry and fluorescence studies. Biochemistry 28:3398–3406.

    PubMed  Google Scholar 

  • Harborne, J. B. 1994. The Flavonoid, Advances in Research Since 1986. Chapman and Hall, London.

    Google Scholar 

  • Lackowicz, J. R. 1983. Principles of Fluorescence Spectroscopy. Plenum Press, New York.

    Google Scholar 

  • London, E. and Feigenson, G. M. 1981. Fluorescence quenching in model membranes. 2. Determination of local lipid environment of the Ca2+-ATPase from sarcoplasmic reticulum. Biochemistry 20:1939–1948.

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, H. J., Farr, A. L., and Randall, R. L. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  • Martonosi, A. N. 1984. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol. Rev. 64:1240–1320.

    PubMed  Google Scholar 

  • Ortiz de Montellano, P. R. 1986. Cytochrome P-450. Structure, Mechanism and Biochemistry. Plenum Press, New York.

    Google Scholar 

  • Rosenthal, G. A. and Berenbaum, M. R. 1991. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Ruegg, J. C. 1988. Calcium in Muscle Activation. Springer-Verlag, Berlin.

    Google Scholar 

  • Seigler, D. S. 1998. Plant Secondary Metabolism. Kluwer Academic, London.

    Google Scholar 

  • Shoshan, V. and MacLennan, D. H. 1981. Quercetin interaction with the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 256:887–892.

    PubMed  Google Scholar 

  • Wollenweber, E. and Dietz, V. H. 1981. Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistry 20:869–932.

    Google Scholar 

  • Zamora, R., HÓdar, J. A., and GÓmez, J. M. 1999. Plant-herbivore interaction: Beyond a binary vision, pp. 677–717, in F. I. Pugnaire and F. Valladares (eds.). Handbook Functional Plant Ecolology. Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosa, T., Chaves, N., Alias, J.C. et al. Inhibition of Mouth Skeletal Muscle Relaxation by Flavonoids of Cistus ladanifer L.: A Plant Defense Mechanism Against Herbivores. J Chem Ecol 30, 1087–1101 (2004). https://doi.org/10.1023/B:JOEC.0000030265.45127.08

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000030265.45127.08

Navigation