Skip to main content
Log in

Zero-Dimensional Nanodots on One-Dimensional Nanowires: Reductive Deposition of Metal Nanoparticles on Silicon Nanowires

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We review herein the surface chemical properties of silicon nanowires (SiNWs) and show how SiNWs can be used as platforms in doing chemistry in the nanorealm. In particular, the surfaces of HF-treated SiNWs (which are H-terminated) exhibit interesting chemical reactivities towards reductive deposition of metal ions such as silver, copper, palladium, etc., giving rise to metal particles or aggregates on the SiNW surfaces. By varying the concentration of the metal ions in solution, nanostructures of these metals of different shapes, sizes, and morphologies can be fabricated. The reductive growth of ligated Au–Ag clusters of single size, shape, composition, and structure, on the SiNWs was also investigated. Two interesting phenomena, the “sinking cluster” and the “cluster fusion” processes, were observed by TEM. These assemblies of metal nanoparticles on silicon nanowires may be considered as zero-dimensional “nanodots,” on one-dimensional “nanowires.” It is hoped that fabrication of these metallic nanodots on silicon nanowires will lead to new and novel composite materials of importance in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. W. Siegel, E. Hu, and M. C. Roco (eds.), Nanostructure Science and Technology Worldwide Study on Status and Trends (Kluwer Academic Publisher, 1999), ISBN 0-7923-5854-6.

  2. National Nanotechnology Initiative: The Initiative and Its Implementation Plan, NSTC/NSET Report, July 2000.

  3. D. V. Leff, P. C. Ohara, J. R. Heath, and W. M. Gelbart (1995). J. Phys. Chem. 99, 7036.

    Google Scholar 

  4. A. C. Templeton, S. Chen, S. M. Gross, and R. W. Murray (1999). Langmuir 15, 66.

    Google Scholar 

  5. S. Chen, K. Huang, and J. A. Stearn (2000). Chem. Mater. 12, 540.

    Google Scholar 

  6. S. Y. Kang and K. Kim (1998). Langmuir 14, 226.

    Google Scholar 

  7. S. Chen and J. M. Sommers (2001). J. Phys. Chem. B 105, 8816.

    Google Scholar 

  8. I. Coulthard, D. T. Jiang, J. W. Lorimer, T. K. Sham, and X. H. Feng (1993). Langmuir 9, 3441.

    Google Scholar 

  9. Y. Shamcham-Diamand, A. Inberg, Y. Sverdlov, V. Bogush, N. Croitoru, H. Moscovich, and A. Freeman (2003). Electrochimica Acta 48, 2987.

    Google Scholar 

  10. A. P. Alivisatos (1993). Science 271, 933.

    Google Scholar 

  11. B. I. Yakobson and R. E. Smalley (1997). Am. Sci. 85, 324.

    Google Scholar 

  12. Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee (1998). Appl. Phys. Lett. 72, 1835.

    Google Scholar 

  13. A. M. Morales and C. M. Lieber (1998). Science 279, 208.

    Google Scholar 

  14. X. Duan and C. M. Lieber (2000). Adv. Mater. 12, 298–302.

    Google Scholar 

  15. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng (1998). Appl. Phys. Lett. 283, 3458.

    Google Scholar 

  16. N. Wang, Y. H. Tang, Y. F. Zhang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee (1998). Chem. Phys. Lett. 283, 368.

    Google Scholar 

  17. N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee (1998). Appl. Phys. Lett. 73, 3902.

    Google Scholar 

  18. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee (1998). Phys. Rev. B 58, 16024.

    Google Scholar 

  19. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee (1999). Chem. Phys. Lett. 299, 237.

    Google Scholar 

  20. S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang (1999). MRS Bull. 36.

  21. W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee (2000). Adv. Mater. 12, 1343.

    Google Scholar 

  22. Y. F. Zhang, L. S. Liao, W. H. Chan, S. T. Lee, R. Sammynaiken, and T. K. Sham (2000). Phys. Rev. B 61, 8298.

    Google Scholar 

  23. Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee, X. D. Han, I. Bello, and S. T. Lee (1999). J. Appl. Phys. 85, 7981.

    Google Scholar 

  24. F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee (1999). Appl. Phys. Lett. 75, 1700.

    Google Scholar 

  25. S. G. Volz and Gang Chen (1999). Appl. Phys. Lett. 75, 2056.

    Google Scholar 

  26. Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber (2000). J. Phys. Chem. B 104, 5213.

    Google Scholar 

  27. G. W. Zhou, H. Li, D. P. Yu, Y. Q. Wang, X. J. Huang, L. Q. Chen, and Z. Zhang (1999). Appl. Phys. Lett. 75, 2447.

    Google Scholar 

  28. D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee (2003). Science 299, 1874–1877.

    Google Scholar 

  29. X. H. Sun, S. D. Wang, N. B. Wong, D. D. D. Ma, S. T. Lee, and B. K. Teo (2003). Inorg Chem. 42, 2398–2404

    Google Scholar 

  30. X. H. Sun, Y. H. Tang, P. Zhang, S. Naftel, R. Sammynaiken, T. K. Sham, Y. F. Zhang, H. Y. Peng, N. B. Wong, and S. T. Lee (2001). J. Appl. Phys. 90, 6379–6383.

    Google Scholar 

  31. X. H. Sun, H. Y. Peng, Y. H. Tang, W. S. Shi, N. B. Wong, C. S. Lee, S. T. Lee, and T. K. Sham (2001). J. Appl. Phys. 89, 6396–6398.

    Google Scholar 

  32. X. H. Sun, R. Sammynaiken, S. J. Nafte, Y. H. Tang, P. Zhang, P. S. Kim, T. K. Sham, X. H. Fan, Y. F. Zhang, N. B. Wong, C. S. Lee, S. T. Lee, Y. F. Hu, and K. H. Tan (2002). Chem. Mater. 14, 2519–2526.

    Google Scholar 

  33. X. H. Sun, C. P. Li, N. B. Wong, C. S. Lee, S. T. Lee, and B. K. Teo (2002). Inorg. Chem. 41, 4331–4336.

    Google Scholar 

  34. X. H. Sun, C. P. Li, N. B. Wong, C. S. Lee, S. T. Lee, and B. K. Teo (2002). J. Am. Chem. Soc. 124, 14856–14857.

    Google Scholar 

  35. X. H. Sun, N. B. Wong, C. P. Li, S. T. Lee, P. G. Kim, and T. K. Sham (2004). Chem. Mater., 1143–1152.

  36. Y. Cui and C. M. Lieber (2001). Science 291, 851.

    Google Scholar 

  37. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber (2001). Science 291, 630.

    Google Scholar 

  38. Y. Huang, X. Duan, Y. Cui, and C. M. Lieber (2002). Nano Lett. 2, 101.

    Google Scholar 

  39. X. Duan, Y. Huang, and C. M. Lieber (2002). Nano Lett. 2, 487.

    Google Scholar 

  40. B. Marsen and K. Sattler (1999). Phys. Rev. B 60, 11593.

    Google Scholar 

  41. L. Ling, S. Kuwabara, T. Abe, and F. Shimura (1993). J. Appl. Phys. 73, 3018–3022.

    Google Scholar 

  42. M. Niwano, J. Kageyama, K. Kinashi, J. Sawahata, and N. Miyamoto (1994). Surf. Sci. Lett. 301, 245–249.

    Google Scholar 

  43. M. Niwano, J. Kageyama, K. Kinashi, I. Takahashi, and N. Miyamoto (1994). J. Appl. Phys. 76, 2157.

    Google Scholar 

  44. E. P. Boonekamp, J. J. Kelly, J. van de Ven, and A. H. M. Sondag (1994). J. Appl. Phys. 75, 8121–8127.

    Google Scholar 

  45. I. Coulthard and T. K. Sham (1996). Phys. Rev. Lett. 77, 4842.

    Google Scholar 

  46. B. Johanson and N. Martensson (1980). Phys. Rev. B 21, 4427.

    Google Scholar 

  47. T. Ohmi, T. Imaoka, I. Sugiyama, and T. Kezuka (1992). J. Electrochem. Soc. 139, 3317.

    Google Scholar 

  48. L. A. Nagahara, T. Ohmori, K. Hashimoto, and A. Fujishima (1993). J. Vac. Sci. Technol. A 11, 763.

    Google Scholar 

  49. B. K. Teo and H. Zhang (1995). Coord. Chem. Rev. 143, 609.

    Google Scholar 

  50. H. Zhang and B. K. Teo (1997). Inorg. Chim. Acta 265, 213.

    Google Scholar 

  51. B. K. Teo and H. Zhang (1991). Proc. Natl. Acad. Sci. USA 88, 5067.

    Google Scholar 

  52. B. K. Teo, H. Dang, C. Campana, and H. Zhang (1998). Polyhedron 17, 617.

    Google Scholar 

  53. B. K. Teo and H. Zhang (2000). J. Organanomet. Chem. 614/615, 66.

    Google Scholar 

  54. B. K. Teo, H. Zhang, and X. Shi (1994). Inorg. Chem. 33, 4086.

    Google Scholar 

  55. B. K. Teo and H. Zhang (2001). J. Cluster Sci. 12, 357.

    Google Scholar 

  56. S. Iijima and T. Ichihashi (1986). Phys. Rev. Lett. 56, 616.

    Google Scholar 

  57. D. J. Smith, A. K. Petford-Long, L. R. Wallenberg, and J. O. Bovin (1986). Science 233, 872.

    Google Scholar 

  58. P. M. Ajayan and L. D. Marks (1988). Phys. Rev. Lett. 56, 585.

    Google Scholar 

  59. N. Doraiswamy and L. D. Marks (1996). Surf. Sci. 384, 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon K. Teo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X.H., Teo, B.K. Zero-Dimensional Nanodots on One-Dimensional Nanowires: Reductive Deposition of Metal Nanoparticles on Silicon Nanowires. Journal of Cluster Science 15, 199–224 (2004). https://doi.org/10.1023/B:JOCL.0000027403.38335.e7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCL.0000027403.38335.e7

Navigation