Skip to main content
Log in

Porous Hybrid Photocatalysts Based on Polyoxometalates

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This paper reviews a series of new and water-tolerant porous POM-containing hybrid photocatalysts with different pore sizes. These materials were prepared by soft chemical synthesis techniques including sol-gel chemistry, intercalation chemistry, colloidal crystal templating, cluster chemistry, and hydrothermal process. We also report the heterogeneous photocatalytic behaviors of these as-prepared materials, including activity, kinetics, and reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Souchay, Polyanions et polycations (Gauthier-Villars, Paris, 1963).

    Google Scholar 

  2. M. T. Pope, Hetropoly and Isopoly Oxometalates (Springer-Verlag, New York, 1983).

    Google Scholar 

  3. M. T. Pope and A. Müller (1991). Angew. Chem., Int. Ed. Engl. 30, 34.

    Google Scholar 

  4. M. T. Pope and A. Müller, Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994).

    Google Scholar 

  5. P. Gouzerh and A. Proust (1998). Chem. Rev. 98, 77.

    Google Scholar 

  6. W. G. Klemperer and C. G. Wall (1998). Chem. Rev. 98, 297.

    Google Scholar 

  7. D. E. Katsoulis (1998). Chem. Rev. 98, 359.

    Google Scholar 

  8. N. Mizuno and M. Misono (1998). Chem. Rev. 98, 199.

    Google Scholar 

  9. I. V. Kozhevnikov (1998). Chem. Rev. 98, 171.

    Google Scholar 

  10. T. Yamase (1983). Inorg. Chim. Ada. 76, 25.

    Google Scholar 

  11. R. C. Chambers and C. L. Hill (1990). J. Am. Chem. Soc. 112, 8427.

    Google Scholar 

  12. H. Einaga and M. Misono (1996). Bull. Chem. Soc. Jpn. 69, 3435.

    Google Scholar 

  13. H. Einaga and M. Misono (1997). Bull. Chem. Soc. Jpn. 70, 1551.

    Google Scholar 

  14. C. Hu, B. Yue, and T. Yamase (2000). Appl Catal. A 194–195, 99.

    Google Scholar 

  15. B. T. Holland, C. F. Blanford, and A. Stein (1998). Science 281, 538.

    Google Scholar 

  16. B. T. Holland, C. F. Blanford, T. Do, and A. Stein (1999). Chem. Mater. 11, 795.

    Google Scholar 

  17. J. E. G. J. Wijnhoven and W. L. Vos (1998). Science 281, 802.

    Google Scholar 

  18. S. J. Sarrade, G. M. Rios, and M. Carles (1998). Sep. Purif. Technol. 14, 19.

    Google Scholar 

  19. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. Driel (2000). Nature 405, 437.

    Google Scholar 

  20. T. Okuhara, T. Nishimura, H. Watanabe, and M. Misono (1994). Stud. Surf. Sci. Catal. 90, 419.

    Google Scholar 

  21. K. Y. Lee, T. Arai, S. Nakata, S. Asaoka, T. Okuhara, and M. Misono (1992). J. Am. Chem. Soc. 114, 2863.

    Google Scholar 

  22. Y. Izumi, M. Ono, M. Kitagawa, M. Yoshida, and K. Urabe (1995). Micropo. Mater. 5, 255.

    Google Scholar 

  23. M. Misono (1987). Catal. Rev. Sci. Eng. 29, 269

    Google Scholar 

  24. M. Misono (1988). Catal. Rev. Sci. Eng. 30, 339.

    Google Scholar 

  25. C. Rocchiccioli-Deltcheff, M. Amirouche, G. Herve, M. Fournier, M. Che, and J. M. Tatibouet (1990). J. Catal. 126, 591.

    Google Scholar 

  26. I. V. Kozhevnikov, A. Sinnema, R. J. J. Jansen, K. Pamin, and H. van Bekkum (1995). Catal. Lett. 30, 241.

    Google Scholar 

  27. C. T. Kresge, D. O. Marler, G. S. Rav, and B. H. Rose (1994), U.S. Patent 5,366,945.

    Google Scholar 

  28. Y. Izumi, and K. Urabe (1981). Chem. Lett. 663.

  29. M. A. Schwegler, H. van Bekkum, and N. A. de Munck (1991). Appl. Catal. 74, 191.

    Google Scholar 

  30. (a) C. Hu, Q. He, Y. Zhang, Y. Liu, Y. Zhang, T. Tang, J. Zhang, and E. Wang (1996). Chem. Commun. 121.

  31. (b) C. Hu, Q. He, Y. Zhang, and E. Wang (1996). Catal. Today 30, 141.

    Google Scholar 

  32. (c) C. Hu, Q. He, and E. Wang (1996). Progr. in Natural Sci. 6, 524.

    Google Scholar 

  33. (d) C. Hu, X. Zhang, and E. Wang (1997). Trans. Met. Chem. 22, 197.

    Google Scholar 

  34. (e) Y. Guo, D. Li, C. Hu, Y. Wang, and E. Wang (2001). Inte. J. Inorg. Mater. 3, 347.

    Google Scholar 

  35. (f) C. Hu, D. Li, Y. Guo, and E. Wang (2001). Chin. Sci. Bull. 46, 1061.

    Google Scholar 

  36. M. Misono and T. Okuhara (1993). Chem. Tech. 23.

  37. J. B. Moffat (1989). J. Mol. Catal. 52, 169.

    Google Scholar 

  38. T. Okuhara, T. Nishimura, H. Watanabe, and M. Misono (1994). Stud. Surf. Sci. Catal. 90, 419.

    Google Scholar 

  39. T. Okuhara, T. Nishimura, and M. Misono (1995). Chem. Lett. 155.

  40. Y. Izumi, M. Ono, M. Ogawa, and K. Urabe (1993). Chem. Lett. 825.

  41. Y. Izumi, M. Ono, M. Kitagawa, M. Yoshida, and K. Urabe (1995). Micropor. Mater. 5, 255.

    Google Scholar 

  42. A. Masakazu, Surface Photochemistry (Wiley, Chichester, England, 1996).

    Google Scholar 

  43. A. Stein (2001). Micropor. Mesopor. Mater. 44–45, 227.

    Google Scholar 

  44. U. Ciesla and F. Schuth (1999). Micropor. Mesopor. Mater. 27, 131.

    Google Scholar 

  45. M. Vautier, C. Guillard, and J.-M. Herrmann (2001). J. Catal 201, 46.

    Google Scholar 

  46. C. Hu, Y. Wang, and H. Tang (2001). Appl Catal. B 35, 95.

    Google Scholar 

  47. J. Grzechulska and A. W. Morawski (2002). Appl Catal. B 36, 45.

    Google Scholar 

  48. G. Liu and J. Zhao (2000). New J. Chem. 24, 411.

    Google Scholar 

  49. D. Li, Y. Guo, C. Hu, L. Mao, and E. Wang (2002). Appl. Catal. A 235, 11.

    Google Scholar 

  50. Y. Guo, Y. Wang, C. Hu, and E. Wang (2000). Chem. Mater. 12, 3501.

    Google Scholar 

  51. Y. Guo, C. Hu, X. Wang, E. Wang, Y. Zhou, and S. Feng (2001). Chem. Mater. 13, 4058.

    Google Scholar 

  52. Y. Guo, D. Li, C. Hu, Y. Wang, and E. Wang (2001). Appl. Catal. B 3–4, 337.

    Google Scholar 

  53. A. P. Wight and M. E. Davis (2002). Chem. Rev. 102, 3589.

    Google Scholar 

  54. R. Neumann and C. J. Abu-Gnim (1989). Chem. Soc., Chem. Commun. 1324.

  55. R. Neumann and C. J. Abu-Gnim (1990). J. Am. Chem. Soc. 112, 6025.

    Google Scholar 

  56. N. Mizuno, M. Tateishi, T. Hirose, and M. Iwamoto (1993). Chem. Lett. 1985.

  57. N. Mizuno, T. Hirose, M. Tateishi, and M. Iwamoto (1993). Chem. Lett. 1839.

  58. C. Hu, M. Hashimoto, T. Okuhara, and M. Misono (1993). J. Catal. 143, 437.

    Google Scholar 

  59. A. M. Khenkin and C. L. Hill (1993). J. Am. Chem. Soc. 115, 8178.

    Google Scholar 

  60. L. C. W. Baker and J. S. Figgis (1970). J. Am. Chem. Soc. 92, 3794.

    Google Scholar 

  61. H. Y. Woo, H. So, and M. T. Pope (1996). J. Am. Chem. Soc. 118, 621.

    Google Scholar 

  62. Y. Guo, C. Hu, C. Jiang, Y. Yang, S. Jiang, X. Li, and E. Wang (2003). J. Catal. 217, 141.

    Google Scholar 

  63. Sadtler Research Laboratories Inc. Sadtler Commercial IR Grating Spectra, Inorganics, Vols. 1–2, Y271K, Y264K (Philadelphia, U.S.A., 1987).

  64. B. T. Holland, C. F. Blanford, and A. Stein (1998). Science 281, 538.

    Google Scholar 

  65. J. E. G. J. Wijnhoven and W. L. Vos (1998). Science 281, 802.

    Google Scholar 

  66. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. Driel (2000). Nature 405, 437.

    Google Scholar 

  67. H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, and A. Stein (2000). Chem. Mater. 12, 1134.

    Google Scholar 

  68. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff (1997). Nature 389, 447.

    Google Scholar 

  69. S. H. Park and Y. Xia (1998). Chem. Mater. 10, 1745.

    Google Scholar 

  70. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler (1999). Nature 401, 548.

    Google Scholar 

  71. P. Jiang, J. Cizeron, J. F. Bertone, and V. L. Colvin (1999). J. Am. Chem. Soc. 121, 7957.

    Google Scholar 

  72. Y. Guo, Y. Yang, C. Hu, C. Guo, E. Wang, Y. Zhou, and S. Feng (2002). J. Mater. Chem. 12, 3046.

    Google Scholar 

  73. Y. Yang, Y. Guo, C. Hu, C. Jiang, and E. Wang (2003). J. Mater. Chem. 13, 1686.

    Google Scholar 

  74. Y. Guo, C. Hu, S. Jiang, C. Guo, Y. Yang, and E. Wang (2002). Appl. Catal. B 36, 9.

    Google Scholar 

  75. D. J. Parrillo, C. Lee, R. J. Gorte, D. White, and W. E. Farneth (1995). J. Phys. Chem. 99, 8745.

    Google Scholar 

  76. J.-C. D'ollveira, G. Al-Sayyed, and P. Pichat (1990). Environ Sci. Technol. 24, 990.

    Google Scholar 

  77. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69.

    Google Scholar 

  78. J. M. Herrmann, C. Guillard, M. Arguello, A. Aguera, A. Tejedor, L. Piedra, and A. Fernandez-Alba (1999). Catal. Today 54, 353.

    Google Scholar 

  79. T. Torimoto, S. Ito, S. Kuwabata, and H. Yoneyama (1996). Environ Sci. Technol. 30, 1275.

    Google Scholar 

  80. D. F. Ollis, E. Pelizzetti, and N. Serpone (1991). Environ Sci. Technol. 25, 1522.

    Google Scholar 

  81. M. Vautier, C. Guillard, and J.-M. Herrmann (2001). J. Catal. 201, 46.

    Google Scholar 

  82. J.-M. Herrmann, H. Tahiri, C. Guillard, and P. Pichat (1999). Catal. Today 54, 131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Wen Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, YH., Hu, CW. Porous Hybrid Photocatalysts Based on Polyoxometalates. Journal of Cluster Science 14, 505–526 (2003). https://doi.org/10.1023/B:JOCL.0000010921.07093.b2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCL.0000010921.07093.b2

Navigation