Skip to main content

Metal–Organic Framework (MOF) and Porous Coordination Polymer (PCP)-Based Photocatalysts

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Recently, there has been intense scientific interest in metal–organic frameworks (MOFs) also called porous coordination polymers (PCPs) owing to their designability in terms of the combination of their organic bridging ligands and metal nodes. The applications of MOFs that began with gas sorption materials have been rapidly extended to include sensing, drug delivery, and catalysis. We review herein the recent progress in designing MOFs for photocatalytic applications. The rational design of MOFs provides the development of visible-light-responsive photocatalysts for the hydrogen evolution reaction, and bifunctional catalysts for a UV-light-promoted unique one-pot reaction. In the former system, the photocatalytic reaction proceeds through light absorption by the organic bridging ligand and the following electron transfer to the catalytically active metal-oxo cluster. The latter system is based on the integration of the photocatalytic ability of the metal-oxo cluster and the basicity of the organic bridging ligand in a single MOF material, which allows for the progression of one-pot sequential photocatalytic oxidation and Knoevenagel condensation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal-organic framework. Nature 378:703–706

    Article  CAS  Google Scholar 

  2. Kondo M, Yoshitomi T, Matsuzaka H et al (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew Chem Int Ed Engl 36:1725–1727

    Article  CAS  Google Scholar 

  3. Yaghi OM, O'Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  4. Kitagawa S, Kitaura R, Noro S-i (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  5. Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472

    Article  CAS  Google Scholar 

  6. Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Article  CAS  Google Scholar 

  7. Matsuda R, Kitaura R, Kitagawa S et al (2005) Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 436:238–241

    Article  CAS  Google Scholar 

  8. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    Article  CAS  Google Scholar 

  9. Sumida K, Rogow DL, Mason JA et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781

    Article  CAS  Google Scholar 

  10. Sakata Y, Furukawa S, Kondo M et al (2013) Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339:193–196

    Article  CAS  Google Scholar 

  11. Sato H, Kosaka W, Matsuda R et al (2014) Self-accelerating CO sorption in a soft nanoporous crystal. Science 343:167–170

    Article  CAS  Google Scholar 

  12. Wu CD, Hu A, Zhang L et al (2005) Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc 127:8940–8941

    Article  CAS  Google Scholar 

  13. Lee J, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  14. Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48:7502–7513

    Article  CAS  Google Scholar 

  15. Corma A, Garcia H, Xamena F (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655

    Article  CAS  Google Scholar 

  16. Saito M, Toyao T, Ueda K et al (2013) Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs. Dalton Trans 42:9444–9447

    Article  CAS  Google Scholar 

  17. Horiuchi Y, Toyao T, Fujiwaki M et al (2015) Zeolitic imidazolate frameworks as heterogeneous catalysts for a one-pot P-C bond formation reaction via Knoevenagel condensation and phospha-Michael addition. RSC Adv 5:24687–24690

    Article  CAS  Google Scholar 

  18. Lan A, Li K, Wu H et al (2009) A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed 48:2334–2338

    Article  CAS  Google Scholar 

  19. Chen BL, Wang LB, Xiao YQ et al (2009) A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew Chem Int Ed 48:500–503

    Article  CAS  Google Scholar 

  20. Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Article  CAS  Google Scholar 

  21. Horcajada P, Serre C, Vallet-Regi M et al (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978

    Article  CAS  Google Scholar 

  22. Horcajada P, Serre C, Maurin G et al (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780

    Article  CAS  Google Scholar 

  23. Horcajada P, Chalati T, Serre C et al (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Article  CAS  Google Scholar 

  24. Wang J-L, Wang C, Lin W (2012) Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal 2:2630–2640

    Article  CAS  Google Scholar 

  25. Nasalevich MA, van der Veen M, Kapteijn F et al (2014) Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm 16:4919–4926

    Article  CAS  Google Scholar 

  26. Maeda K, Teramura K, Lu D et al (2006) Photocatalyst releasing hydrogen from water. Nature 440:295

    Article  CAS  Google Scholar 

  27. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  28. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661

    Article  CAS  Google Scholar 

  29. Horiuchi Y, Toyao T, Takeuchi M et al (2013) Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion – from semiconducting TiO2 to MOF/PCP photocatalysts. Phys Chem Chem Phys 15:13243–13253

    Article  CAS  Google Scholar 

  30. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  31. Wang C, deKrafft KE, Lin W (2012) Pt nanoparticles@photoactive metal–organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. J Am Chem Soc 134:7211–7214

    Article  CAS  Google Scholar 

  32. Alvaro M, Carbonell E, Ferrer B et al (2007) Semiconductor behavior of a metal-organic framework (MOF). Chem Eur J 13:5106–5112

    Article  CAS  Google Scholar 

  33. Tachikawa T, Choi JR, Fujitsuka M et al (2008) Photoinduced charge-transfer processes on MOF-5 nanoparticles: elucidating differences between metal-organic frameworks and semiconductor metal oxides. J Phys Chem C 112:14090–14101

    Article  CAS  Google Scholar 

  34. Gomes Silva C, Luz I, Llabrés i Xamena FX et al (2010) Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem Eur J 16:11133–11138

    Article  Google Scholar 

  35. Fu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51:3364–3367

    Article  CAS  Google Scholar 

  36. Horiuchi Y, Toyao T, Saito M et al (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. J Phys Chem C 116:20848–20853

    Article  CAS  Google Scholar 

  37. Toyao T, Saito M, Horiuchi Y et al (2013) Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal–organic framework photocatalyst. Catal Sci Technol 3:2092–2097

    Article  CAS  Google Scholar 

  38. Toyao T, Saito M, Dohshi S et al (2014) Development of a Ru complex-incorporated MOF photocatalyst for hydrogen production under visible-light irradiation. Chem Commun 50:6779–6781

    Article  CAS  Google Scholar 

  39. Hall N (1994) Chemists clean up synthesis with one-pot reactions. Science 266:32–34

    Article  CAS  Google Scholar 

  40. Wasilke J-C, Obrey SJ, Baker RT et al (2005) Concurrent tandem catalysis. Chem Rev 105:1001–1020

    Article  CAS  Google Scholar 

  41. Motokura K, Fujita N, Mori K et al (2005) An acidic layered clay is combined with a basic layered clay for one-pot sequential reactions. J Am Chem Soc 127:9674–9675

    Article  CAS  Google Scholar 

  42. Toyao T, Fujiwaki M, Horiuchi Y et al (2013) Application of an amino-functionalised metal-organic framework: an approach to a one-pot acid-base reaction. RSC Adv 3:21582–21587

    Article  CAS  Google Scholar 

  43. Toyao T, Saito M, Horiuchi Y et al (2014) Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal-organic framework. Catal Sci Technol 4:625–628

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Horiuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horiuchi, Y., Toyao, T., Matsuoka, M. (2016). Metal–Organic Framework (MOF) and Porous Coordination Polymer (PCP)-Based Photocatalysts. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_27

Download citation

Publish with us

Policies and ethics