Skip to main content
Log in

GFT NMR Experiments for Polypeptide Backbone and 13Cβ Chemical Shift Assignment

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

(4,3)D, (5,3)D and (5,2)D GFT triple resonance NMR experiments are presented for polypeptide backbone and 13Cβ resonance assignment of 15N/13C labeled proteins. The joint sampling of m = 2, 3 or 4 indirect chemical shift evolution periods of 4D and 5D NMR experiments yields the measurement of 2m − 1 linear combinations of shifts. To obtain sequential assignments, these are matched in corresponding experiments delineating either intra or interresidue correlations. Hence, an increased set of matches is registered when compared to conventional approaches, and the 4D or 5D information allows one to efficiently break chemical shift degeneracy. Moreover, comparison of single-quantum chemical shifts obtained after a least squares fit using either the intra or the interresidue data demonstrates that GFT NMR warrants highly accurate shift measurements. The new features of GFT NMR based resonance assignment strategies promise to be of particular value for establishing automated protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrof, N.S., Lyon, C.E. and Griffin, R.G. (2001) J. Magn. Reson., 152, 303–307.

    Google Scholar 

  • Bax, A. (2003) Protein Sci., 12, 1–16.

    Google Scholar 

  • Bersch, B., Rossy, E., Coves, J. and Brutscher, B. (2003) J. Biomol. NMR, 27, 57–67.

    Google Scholar 

  • Bodenhausen, G. and Ernst, R.R. (1982) J. Am. Chem. Soc., 104, 1304–1309.

    Google Scholar 

  • Boelens, R., Burgering, M., Fogh, R.H. and Kaptein, R. (1994) J. Biomol. NMR, 4, 201–213.

    Google Scholar 

  • Brutscher, B. (2002) J. Magn. Reson., 156, 155–159.

    Google Scholar 

  • Brutscher, B., Cordier, F., Simorre, J.-P., Caffrey, M.S. and Marion, D. (1995a) J. Biomol. NMR, 5, 202–206.

    Google Scholar 

  • Brutscher, B., Morelle, N., Cordier, F. and Marion, D. (1995b) J. Magn. Reson., B109, 238–242.

    Google Scholar 

  • Brutscher, B., Simorre, J.-P., Caffrey and Marion, D. (1994) J. Magn. Reson., B105, 77–82.

    Google Scholar 

  • Brutscher, B., Skrynnikov, N.R., Bremi, T., Bruschweiler, R. and Ernst, R.R. (1998) J. Magn. Reson., 130, 346–351.

    Google Scholar 

  • Cavanagh, J., Fairbrother, W.J., Palmer III, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy, Wiley, New York.

    Google Scholar 

  • Ding, K. and Gronenborn, A.M. (2002) J. Magn. Reson., 156, 262–268.

    Google Scholar 

  • Frydman, L., Scherf, T. and Lupulescu, A. (2002) Proc. Natl. Acad. Sci. USA, 99, 15858–15862.

    Google Scholar 

  • Grage, H. and Akke, M. (2003) J. Magn. Reson., 162, 176–188.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc, 114, 6291–6293.

    Google Scholar 

  • Gutmanas, A., Jarvoll, P., Orekhov, V.Y. and Billeter, M. (2002) J. Biomol. NMR, 24, 191–201.

    Google Scholar 

  • Hu, H., Van, Q.N., Mandelshtam, V.A. and Shaka, A.J. (1998) J. Magn. Reson., 134, 76–87.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Kim, S. and Szyperski, T. (2003) J. Am. Chem. Soc., 125, 1385–1393.

    Google Scholar 

  • Kozminski, W. and Zhukov, I. (2003) J. Biomol. NMR, 26, 157–166.

    Google Scholar 

  • Kupce, E. and Freeman, R. (1993) J. Magn. Reson. Ser A, 105, 310–315.

    Google Scholar 

  • Kupce, E. and Freeman, R. (2003) J. Biomol. NMR, 25, 349–354.

    Google Scholar 

  • Liu, G., Mills, J.L., Hess, T.A., Kim, S., Skalicky, J.J., Sukumaran, D.K., Kupce, E., Skerra, A. and Szyperski, T. (2003) J. Biomol. NMR, 27, 187–188.

    Google Scholar 

  • Löhr, F. and Rüterjans, H. (1995) J. Biomol. NMR, 6, 189–197.

    Google Scholar 

  • Luca, S. and Baldus, M. (2002) J. Magn. Reson., 159, 243–249.

    Google Scholar 

  • Meissner, A. and Sørensen, O.W. (2001) J. Magn. Reson., 150, 100–104.

    Google Scholar 

  • Monleon, D., Colson, K., Moseley, H.N.B., Anklin, C., Oswald, R., Szyperski, T. and Montelione, G.T. (2002) J. Struct. Funct. Genomics, 2, 93–101.

    Google Scholar 

  • Montelione, G.T., Zheng, D., Huang, Y., Gunsalus, C. and Szyperski, T. (2000) Nat. Struct. Biol., 7, 982–984.

    Google Scholar 

  • Moseley, H.N.M., Tejero, R., Zimmerman, D.E., Celda, B., Nilsson, B. and Montelione, G.T. (2002) Meth. Enzymol., 339, 91–108.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 99, 8009–8014.

    Google Scholar 

  • Reif, B., Hennig, M. and Griesinger, C. (1997) Science, 276, 1230–1233.

    Google Scholar 

  • Rexroth, A., Schmidt, P., Szalma, S., Geppert, T., Schwalbe, H. and Griesinger, C. (1995) J. Am. Chem. Soc., 117, 10389–10391.

    Google Scholar 

  • Schmieder, P., Stern, A.S., Wagner, G. and Hoch, J.C. (1994) J. Biomol. NMR, 4, 483–490.

    Google Scholar 

  • Simorre, J.-P., Brutscher, B., Caffrey, M.S. and Marion, D. (1994) J. Biomol. NMR, 4, 325–333.

    Google Scholar 

  • Sklenar, V., Dieckmann, T., Butcher, S.E. and Feigon, J. (1998) J. Magn. Reson., 130, 119–124.

    Google Scholar 

  • Szyperski, T., Banecki, B., Braun, D. and Glaser, R.W. (1998) J. Biomol. NMR, 11, 387–405.

    Google Scholar 

  • Szyperski, T., Braun, D., Banecki, B. and Wüthrich, K. (1996) J. Am. Chem. Soc., 118, 8146–8147.

    Google Scholar 

  • Szyperski, T., Braun, D., Fernandez, C., Bartels, C. and Wüthrich, K. (1995) J. Magn. Reson., B108, 197–203.

    Google Scholar 

  • Szyperski, T., Pellecchia, M. and Wüthrich, K. (1994) J. Magn. Reson., B 105, 188–191.

    Google Scholar 

  • Szyperski, T., Wider, G., Bushweller, J.H. and Wüthrich, K. (1993a) J. Biomol. NMR, 3, 127–132.

    Google Scholar 

  • Szyperski, T., Wider, G., Bushweller, J.H. and Wüthrich, K. (1993b) J. Am. Chem. Soc., 115, 9307–9308.

    Google Scholar 

  • Szyperski, T., Yeh, D.C., Sukumaran, D.K., Moseley, H.N.B. and Montelione, G.T. (2002) Proc. Natl. Acad. Sci. USA, 99, 8009–8014.

    Google Scholar 

  • Xia, Y., Arrowsmith, C. and Szyperski, T. (2002) J. Biomol. NMR, 24, 41–50.

    Google Scholar 

  • Wall, M.R. and Neuhauser, D. (1995) J. Chem. Phys., 112, 8011–8022.

    Google Scholar 

  • Zweckstetter, M. and Bax, A. (2001) J. Am. Chem. Soc., 123, 9490–9491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Szyperski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Szyperski, T. GFT NMR Experiments for Polypeptide Backbone and 13Cβ Chemical Shift Assignment. J Biomol NMR 28, 117–130 (2004). https://doi.org/10.1023/B:JNMR.0000013827.20574.46

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000013827.20574.46

Navigation