Skip to main content
Log in

Innovative tissue engineering structures through advanced manufacturing technologies

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A wide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(ε-caprolactone) and poly- (ε-caprolactone)–poly-(oxyethylene)–poly-(ε-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10–300 mm Hg, resulting in controlled polymer deposition of 5–600 μm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 μm×700 μm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Li, J. Pan, L. Zhang and Y. Yu, Biomaterials 24 (2003) 2317.

    Google Scholar 

  2. M. S. Widmer, P. K. Gupta, L. Lu, R. K. Meszlenyi, G. R. D. Evans, K. Brandt, T. Savel, A. Gurlek, C. W. Patrick Jr and A. G. Mikos, Biomaterials 19 (1998) 1945.

    Google Scholar 

  3. A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow and J. P. Vacanti, Polymer 35 (1994) 1068.

    Google Scholar 

  4. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti and R. Langer, Biomaterials 14 (1993) 323.

    Google Scholar 

  5. K. Whang, C. H. Thomas, K. E. Healy and G. Nuber, Polymer 36 (1995) 837.

    Google Scholar 

  6. K. Whang, K. E. Healy, D. R. Elenz, E. K. Nam, D. C. Tsai, C. H. Thomas, M. D. Nuber, F. H. Glorieux, R. Travers and S. M. Sprague, Tissue Eng. 5 (1999) 35.

    Google Scholar 

  7. L. D. Harris, B. S. Kim and D. J. Mooney, J. Biomed. Mater. Res. 42 (1998) 396.

    Google Scholar 

  8. I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, Biomaterials 23 (2002) 1169.

    Google Scholar 

  9. R. Landers and R. Mullhaupt, Macromol. Mater. Eng. 282 (2000) 17.

    Google Scholar 

  10. Y. Yan, Z. Xiong, Y. Hu, S. Wang, R. Zhang and C. Zhang, Mater. Lett. 57 (2003) 2623.

    Google Scholar 

  11. G. Vozzi, C. J. Flaim, A. Ahluwalia and S. Bhatia, Biomaterials 24 (2003) 2533.

    Google Scholar 

  12. G. Vozzi, A. Previti, D. De Rossi and A. Ahluwalia, Tissue Eng. 8 (2002) 1089.

    Google Scholar 

  13. G. Vozzi, C. J. Flaim, F. Bianchi, A. Ahluwalia and S. Bhatia, Mater. Sci. Eng. C. 20 (2002) 43.

    Google Scholar 

  14. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. 37 (1988) 550.

    Google Scholar 

  15. R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber and G. M. Whitesides, Biomaterials 20 (1999) 2363.

    Google Scholar 

  16. J. P. Vacanti, L. G. Cima and M. J. Cima, PCT Int. Appl. (1996) 44.

  17. K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar and S. W. Cha, Biomaterials 24 (2003) 3115.

    Google Scholar 

  18. R. A. Giordano, B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs and M. J. Cima, J. Biomater. Sci. Polym. Ed. 8 (1996) 63.

    Google Scholar 

  19. M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber and G. M. Whitesides, Exp. Cell. Res. 235 (1997) 305.

    Google Scholar 

  20. S. S. Kim, H. Utsunomiya, J. A. Koski, B. M. Wu, M. J. Cima, J. Sohn, K. Mukai, L. G. Griffith and J. P. Vacanti, Ann. Surg. 228 (1998) 8.

    Google Scholar 

  21. A. Park, B. Wu and L. G. Griffith, J. Biomater. Sci. Polym. Ed. 9 (1998) 89.

    Google Scholar 

  22. C. X. F. Lam, X. M. Mo, S. H. Teoh and D. W. Hutmacher, Mater. Sci. Eng. C 20 (2002) 49.

    Google Scholar 

  23. Wohlers Report 2000, “Rapid Prototyping & Tooling State of the Industry Annual Worldwide Progress Report”, Wohler Associates, Inc., Fort Collins, CO, 2000.

  24. C. R. Deckard, M.S. Thesis, Department of Mechanical Engineering, The University of Texas at Austin, 1986.

  25. C. R. Deckard, Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1988.

  26. H. C. H. Ho, I. Gibson and W. L. Cheung, J. Mater. Process. Technol. 89–90 (1999) 204.

    Google Scholar 

  27. H. C. H. Ho, W. L. Cheung and I. Gibson, Ind. Eng. Chem. Res. 42 (2003) 1850.

    Google Scholar 

  28. G. Zong, Y. Wu, N. Tran, I. Lee, D. L. Bourell and H. L. Marcus, Solid Freeform Fabric. Symp. Proc., 3 (1992) 72.

    Google Scholar 

  29. N. K. Vail, J. W. Barlow, J. J. Beaman, H. L. Marcus and D. L. Bourell, J. Appl. Polym. Sci. 52 (1994) 789.

    Google Scholar 

  30. D. King and T. Tansey, J. Mater. Process. Technol. 132 (2003) 42.

    Google Scholar 

  31. J. T. Rimell and P. M. Marquis, J. Biomed. Mater. Res. 53 (2000) 414.

    Google Scholar 

  32. E. Berry, J. M. Brown, M. Connel, C. M. Craven, N. D. Efford, A. Radjenovic and M. A. Smith, Med. Engg. Phys. 19 (1997) 90.

    Google Scholar 

  33. P. Cerrai, M. Tricoli, F. Andruzzi and M. Paci, ibid. 30 (1989) 338.

    Google Scholar 

  34. M. Paci, Polymer 28 (1987) 831.

    Google Scholar 

  35. B. A. Rozenberg, Macromol. Chem., Macromol. Symp. 60 (1992) 177.

    Google Scholar 

  36. P. Cerrai, G. D. Guerra, L. Lelli, M. Tricoli, R. Sbarbati Del Guerra, M. G. Cascone and P. Giusti, J. Mater. Sci. Mater. Med. 5 (1994) 33.

    Google Scholar 

  37. A. Lamprecht, N. Ubrich, M. Hombreiro Pérez, C. M. Lehr, M. Hoffman and P. Maincent, Int. J. Pharm. 196 (2000) 177.

    Google Scholar 

  38. M. G. Cascone, Z. Zhu, F. Borselli and L. Lazzeri, J. Mater. Sci. Mater. Med. 13 (2002) 29.

    Google Scholar 

  39. I. Engelberg and J. Kohn, Biomaterials 12 (1991) 292.

    Google Scholar 

  40. G. Ciapetti, L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa and A. Giunti, ibid. 24 (2003) 3815.

    Google Scholar 

  41. H. Yoshimoto, Y. M. Shin, H. Terai and J. P. Vacanti, ibid. 24 (2003) 2077.

    Google Scholar 

  42. I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, ibid. 23 (2002) 1169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Ciardelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciardelli, G., Chiono, V., Cristallini, C. et al. Innovative tissue engineering structures through advanced manufacturing technologies. Journal of Materials Science: Materials in Medicine 15, 305–310 (2004). https://doi.org/10.1023/B:JMSM.0000021092.03087.d4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000021092.03087.d4

Keywords

Navigation