Skip to main content

Advertisement

Log in

Indirect Rapid Prototyping: Opening Up Unprecedented Opportunities in Scaffold Design and Applications

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Over the past decades, solid freeform fabrication (SFF) has emerged as the main technology for the production of scaffolds for tissue engineering applications as a result of the architectural versatility. However, certain limitations have also arisen, primarily associated with the available, rather limited range of materials suitable for processing. To overcome these limitations, several research groups have been exploring novel methodologies through which a construct, generated via SFF, is applied as a sacrificial mould for production of the final construct. The technique combines the benefits of SFF techniques in terms of controlled, patient-specific design with a large freedom in material selection associated with conventional scaffold production techniques. Consequently, well-defined 3D scaffolds can be generated in a straightforward manner from previously difficult to print and even “unprintable” materials due to thermomechanical properties that do not match the often strict temperature and pressure requirements for direct rapid prototyping. These include several biomaterials, thermally degradable materials, ceramics and composites. Since it can be combined with conventional pore forming techniques, indirect rapid prototyping (iRP) enables the creation of a hierarchical porosity in the final scaffold with micropores inside the struts. Consequently, scaffolds and implants for applications in both soft and hard tissue regeneration have been reported. In this review, an overview of different iRP strategies and materials are presented from the first reports of the approach at the turn of the century until now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

2PP:

Two photon polymerization

3D:

Three dimensional

3DP:

Three dimensional printing

µm:

Micrometer

AJS:

Air jet solidification

AM:

Additive manufacturing

BMP:

Bone-morphogenic proteins

CAD:

Computer aided design

CAM:

Computer aided manufacturing

DDP:

Drop on demand printing

DLP:

Digital light projection

CPD:

Critical point drying

CT:

Computed tomography

DMD:

Digital micromirror device

ECM:

Extra cellular matrix

eiRP:

External indirect rapid prototyping

FDM:

Fused deposition modelling

HA:

Hydroxyapatite

HFF:

Human foreskin fibroblasts

IJP:

Ink-jet printing

iiRP:

Internal indirect rapid prototyping

iRP:

Indirect rapid prototyping

LoC:

Lab on chip

MEW:

Melt electrospinning writing

mPa:

Milli Pascal

MSTL:

Micro stereolithography

PCL:

Poly-(ε-caprolactone)

PDL:

Periodontal ligament

PDMS:

Poly(dimethylsiloxane)

PEG:

Poly-(ethylene glycol)

PGA:

Poly-(glycolic acid)

PLA:

Poly-(lactic acid)

PLGA:

Poly-(lactic-co-glycolic acid)

PPF:

Poly-(propylene fumarate)

RP:

Rapid prototyping

SFF:

Solid freeform fabrication

SLA:

Stereolithography

SLS:

Selective laser sintering

SMD:

Selective mould dissolution

TCP:

Tricalcium phosphate

UV:

Ultra violet

HUVECs:

Human umbilical vein endothelial cells

References

  1. Arcaute, K., B. K. Mann, and R. B. Wicker. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34:1429–1441, 2006.

    Article  PubMed  Google Scholar 

  2. Barry, R. A., R. F. Shepherd, J. N. Hanson, R. G. Nuzzo, P. Wiltzius, and J. A. Lewis. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 21:2407–2410, 2009.

    Article  CAS  Google Scholar 

  3. Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.

    Article  CAS  PubMed  Google Scholar 

  5. Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Bose, S., J. Darsell, M. Kintner, H. Hosick, and A. Bandyopadhyay. Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater. Sci. Eng. C 23:479–486, 2003.

    Article  CAS  Google Scholar 

  7. Bose, S., S. Suguira, and A. Bandyopadhyay. Processing of controlled porosity ceramic structures via fused deposition. Scr. Mater. 41:1009–1014, 1999.

    Article  CAS  Google Scholar 

  8. Brown, T. D., P. D. Dalton, and D. W. Hutmacher. Direct Writing by way of melt electrospinning. Adv. Mater. 23:5651–5657, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Chang, P.-C., B.-Y. Liu, C.-M. Liu, H.-H. Chou, M.-H. Ho, H.-C. Liu, D.-M. Wang, and L.-T. Hou. Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J. Biomed. Mater. Res. A 81:771–780, 2007.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, Z. Z., D. C. Li, B. H. Lu, Y. P. Tang, M. L. Sun, and Z. Wang. Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyp. J. 10:327–333, 2004.

    Article  Google Scholar 

  11. Chen, V. J., L. A. Smith, and P. X. Ma. Bone regeneration on computer-designed nano-fibrous scaffolds. 27:3973–3979, 2006; (Image (Table 2) was reprinted with permission from Springer).

    CAS  Google Scholar 

  12. Chia, H. N., and B. M. Wu. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9:4, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chu, T. M. G., J. W. Halloran, S. J. Hollister, and S. E. Feinberg. Hydroxyapatite implants with designed internal architecture. J. Mater. Sci. Mater. Med. 12:471–478, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Chu, T. M. G., D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23:1283–1293, 2002; (Image (Table 1) was reprinted with permission from Elsevier).

    Article  CAS  PubMed  Google Scholar 

  15. Chu, T.-M. G., S. J. Warden, C. H. Turner, and R. L. Stewart. Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials 28:459–467, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. De Beer, N., and A. Van Der Merwe. Patient-specific intervertebral disc implants using rapid manufacturing technology. Rapid Prototyp. J. 19:126–139, 2013.

    Article  Google Scholar 

  17. De Coster, D., D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missine, and H. Thienpont. Free-form optics enhanced confocal Raman spectroscopy for optofluidic lab-on-chips. IEEE J. Sel. Top. Quantum Electron. 21:2701108, 2015.

    Article  CAS  Google Scholar 

  18. De Coster, D., H. Ottevaere, M. Vervaeke, J. Van Erps, M. Callewaert, P. Wuytens, S. H. Simpson, S. Hanna, W. De Malsche, and H. Thienpont. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping. Opt. Express 23:30991, 2015.

    Article  PubMed  Google Scholar 

  19. De Maria, C., A. De Acutis, and G. Vozzi. Indirect Rapid Prototyping for Tissue Engineering. Elsevier, 2015. doi:10.1016/B978-0-12-800972-7/00008-6.

  20. Deisinger, U., S. Hamisch, M. Schumacher, F. Uhl, R. Detsch, and G. Ziegler. Fabrication of tailored hydroxyapatite scaffolds: comparison between a direct and an indirect rapid prototyping technique. Key Eng. Mater. II(915–918):361–363, 2008.

    Google Scholar 

  21. Detsch, R., F. Uhl, U. Deisinger, and G. Ziegler. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J. Mater. Sci. Mater. Med. 19:1491–1496, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Gadegaard, N., S. Mosler, and N. B. Larsen. Biomimetic polymer nanostructures by injection molding. Macromol. Mater. Eng. 288:76–83, 2003.

    Article  CAS  Google Scholar 

  23. Golden, A. P., and J. Tien. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720, 2007; (Image (Table 1) was reprinted with permission from Elsevier).

    Article  CAS  PubMed  Google Scholar 

  24. Graulus, G.-J., A. Mignon, S. Van Vlierberghe, H. Declercq, K. Fehér, M. Cornelissen, J. C. Martins, and P. Dubruel. Cross-linkable alginate-graft-gelatin copolymers for tissue engineering applications. Eur. Polym. J. 2015. doi:10.1016/j.eurpolymj.2015.06.033.

    Google Scholar 

  25. Grumann, M., J. Steigert, L. Riegger, I. Moser, B. Enderle, K. Riebeseel, G. Urban, R. Zengerle, and J. Ducrée. Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed. Microdevices 8:209–214, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Haigh, J. N., Y. Chuang, B. Farrugia, R. Hoogenboom, P. D. Dalton, and T. R. Dargaville. Hierarchically structured porous poly(2-oxazoline) hydrogels. Macromol. Rapid Commun. 2015. doi:10.1002/marc.201500495.

    PubMed  Google Scholar 

  27. Hattiangadi, A., and A. Bandyopadhyay. Processing, Characterization and Modeling of Non-Random Porous Ceramic Structures. Int. Solid Free. Fabr. Symp. 319–326, 1999.

  28. Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl. Acad. Sci. USA 104:20496–20500, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho, Y.-C., F.-M. Huang, and Y.-C. Chang. Cytotoxicity of formaldehyde on human osteoblastic cells is related to intracellular glutathione levels. J. Biomed. Mater. Res. B Appl. Biomater. 83:340–344, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Hollister, S. J., R. A. Levy, T. M. Chu, J. W. Halloran, and S. E. Feinberg. An image-based approach for designing and manufacturing craniofacial scaffolds. Int. J. Oral Maxillofac. Surg. 29:67–71, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Hollister, S., C. Lin, E. Saito, C. Lin, R. Schek, J. Taboas, J. Williams, B. Partee, C. Flanagan, A. Diggs, E. Wilke, G. Van Lenthe, R. M. Ller, T. Wirtz, S. Das, S. Feinberg, and P. Krebsbach. Engineering craniofacial scaffolds. Orthod. Craniofac. Res. 8:162–173, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103, 2002.

    Article  CAS  PubMed  Google Scholar 

  33. Jain, R. K., P. Au, J. Tam, D. G. Duda, and D. Fukumura. Engineering vascularized tissue. Nat. Biotechnol. 23:821–823, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Kang, H.-W., and D.-W. Cho. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity. Tissue Eng. C Methods 18:719–729, 2012.

    Article  CAS  Google Scholar 

  35. Kang, K. H., L. A. Hockaday, and J. T. Butcher. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication 5:035001, 2013.

    Article  CAS  PubMed  Google Scholar 

  36. Kang, H., J. Rhie, and D. Cho. Development of a bi-pore scaffold using indirect solid freeform fabrication based on microstereolithography technology. Microelectron. Eng. 86:941–944, 2009.

    Article  CAS  Google Scholar 

  37. Lam, C. X., X. Mo, S. Teoh, and D. Hutmacher. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 20:49–56, 2002.

    Article  Google Scholar 

  38. Landers, R., A. Pfister, U. Hubner, H. John, R. Schmelzeisen, and R. Milhaupt. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37:3107–3116, 2002.

    Article  CAS  Google Scholar 

  39. Langer, R., and J. P. Vacanti. Tissue engineering. Science (80-) 260:920–926, 1993.

    Article  CAS  Google Scholar 

  40. Lee, J.-Y., B. Choi, B. Wu, and M. Lee. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 5:045003, 2013.

    Article  PubMed  CAS  Google Scholar 

  41. Lee, J.-Y., B. Choi, B. Wu, and M. Lee. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 5:12–14, 2013.

    Google Scholar 

  42. Lee, M., J. C. Y. Dunn, and B. M. Wu. Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26:4281–4289, 2005.

    Article  CAS  PubMed  Google Scholar 

  43. Lee, M., B. M. Wu, and J. C. Y. Dunn. Effect of scaffold architecture and pore size on smooth muscle cell growth. J. Biomed. Mater. Res. A 87A:1010–1016, 2008.

    Article  CAS  Google Scholar 

  44. Li, L. H., K. P. Kommareddy, C. Pilz, C. R. Zhou, P. Fratzl, and I. Manjubala. In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres. Acta Biomater. 6:2525–2531, 2010.

    Article  CAS  PubMed  Google Scholar 

  45. Liao, E., M. Yaszemski, P. Krebsbach, and S. Hollister. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 13:537–550, 2007.

    Article  CAS  PubMed  Google Scholar 

  46. Lim, D., Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama. Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 3:318–323, 2003.

    Article  CAS  PubMed  Google Scholar 

  47. Limpanuphap, S., and B. Derby. Manufacture of biomaterials by a novel printing process. J. Mater. Sci. Mater. Med. 13:1163–1166, 2002.

    Article  CAS  PubMed  Google Scholar 

  48. Lin, C.-Y., R. Schek, A. Mistry, X. Shi, A. G. Mikos, P. H. Krebsbach, and S. J. Hollister. Functional bone engineering using ex vivi gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tissue Eng. 11:1589–1598, 2005.

    Article  CAS  PubMed  Google Scholar 

  49. Liska, R., F. Schwager, C. Maier, R. Cano-Vives, and J. Stampfl. Water-soluble photopolymers for rapid prototyping of cellular materials. J. Appl. Polym. Sci. 97:2286–2298, 2005.

    Article  CAS  Google Scholar 

  50. Liu, M. J. J., S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography. Med. Eng. Phys. 35:253–262, 2013; (Image (Table 2) was reprinted with permission from Springer.).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, C. Z., E. Sachlos, D. A. Wahl, Z. W. Han, and J. T. Czernuszka. On the manufacturability of scaffold mould using a 3D printing technology. Rapid Prototyp. J. 13:163–174, 2007.

    Article  Google Scholar 

  52. Liu, R. H., M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 9:190–197, 2000.

    Article  Google Scholar 

  53. Liu, C. Z., Z. D. Xia, Z. W. Han, P. A. Hulley, J. T. Triffitt, and J. T. Czernuszka. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 85:519–528, 2008.

    Article  CAS  PubMed  Google Scholar 

  54. Lu, L., Q. Zhang, D. Wootton, R. Chiou, D. Li, B. Lu, P. Lelkes, and J. Zhou. Biocompatibility and biodegradation studies of PCL/b-TCP bone tissue scaffold fabricated by structural porogen method. J. Mater. Sci. Mater. Med. 23:2217–2226, 2012; (Image (Table 1) was reprinted with permission from Elsevier).

    Article  CAS  PubMed  Google Scholar 

  55. Mäkitie, A. A., J. Korpela, L. Elomaa, M. Reivonen, A. Kokkari, M. Malin, H. Korhonen, X. Wang, J. Salo, E. Sihvo, M. Salmi, J. Partanen, K.-S. Paloheimo, J. Tuomi, T. Närhi, and J. Seppälä. Novel additive manufactured scaffolds for tissue engineered trachea research. Acta Otolaryngol. 133:412–417, 2013.

    Article  PubMed  CAS  Google Scholar 

  56. Manjubala, I., A. Woesz, C. Pilz, M. Rumpler, N. Fratzl-Zelman, P. Roschger, J. Stampfl, and P. Fratzl. Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J. Mater. Sci. Mater. Med. 16:1111–1119, 2005.

    Article  CAS  PubMed  Google Scholar 

  57. Mantila Roosa, S. M., J. M. Kemppainen, E. N. Moffitt, P. H. Krebsbach, and S. J. Hollister. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res. A 92:359–368, 2010.

    Article  CAS  Google Scholar 

  58. Markovic, M., J. Van Hoorick, K. Hölzl, M. Tromayer, P. Gruber, S. Nürnberger, P. Dubruel, S. Van Vlierberghe, R. Liska, and A. Ovsianikov. Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J. Nanotechnol. Eng. Med. 6:021004, 2015.

    Article  Google Scholar 

  59. Melchels, F. P. W., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.

    Article  CAS  PubMed  Google Scholar 

  60. Melican, M. C., M. C. Zimmerman, M. S. Dhillon, A. R. Ponnambalam, A. Curodeau, and J. R. Parsons. Three-dimensional printing and porous metallic surfaces: a new orthopedic application. J. Biomed. Mater. Res. 55:194–202, 2001.

    Article  CAS  PubMed  Google Scholar 

  61. Meyer, U. The history of tissue engineering and regenerative medicine in perspective. In: Fundamentals of Tissue Engineering and Regenerative Medicine, edited by U. Meyer, Th Meyer, J. Handschel, and J. P. Wiesmann. Berlin: Springer, 2009, pp. 5–12.

    Chapter  Google Scholar 

  62. Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D.-H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mondrinos, M. J., R. Dembzynski, L. Lu, V. K. C. Byrapogu, D. M. Wootton, P. I. Lelkes, and J. Zhou. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408, 2006.

    Article  CAS  PubMed  Google Scholar 

  64. Moore, M. J., J. A. Friedman, E. B. Lewellyn, S. M. Mantila, A. J. Krych, S. Ameenuddin, A. M. Knight, L. Lu, B. L. Currier, R. J. Spinner, R. W. Marsh, A. J. Windebank, and M. J. Yaszemski. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27:419–429, 2006.

    Article  CAS  PubMed  Google Scholar 

  65. Moroni, L., R. Schotel, D. Hamann, J. R. de Wijn, and C. A. van Blitterswijk. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Funct. Mater. 18:53–60, 2008.

    Article  CAS  Google Scholar 

  66. Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ovsianikov, A., A. Deiwick, S. Van Vlierberghe, P. Dubruel, M. Lena, G. Dräger, and B. Chichkov. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12:851–858, 2011.

    Article  CAS  PubMed  Google Scholar 

  68. Ovsianikov, A., A. Deiwick, S. Van Vlierberghe, M. Pflaum, M. Wilhelmi, P. Dubruel, and B. Chichkov. Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials (Basel) 4:288–299, 2011.

    Article  CAS  Google Scholar 

  69. Ovsianikov, A., S. Mühleder, J. Torgersen, Z. Li, X.-H. Qin, S. Van Vlierberghe, P. Dubruel, W. Holnthoner, H. Redl, R. Liska, and J. Stampfl. Laser photofabrication of cell-containing hydrogel constructs. Langmuir 30:3787–3794, 2014.

    Article  CAS  PubMed  Google Scholar 

  70. Ovsianikov, A., A. Ostendorf, and B. N. Chichkov. Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci. 253:6599–6602, 2007.

    Article  CAS  Google Scholar 

  71. Park, S., G. Kim, Y. C. Jeon, Y. Koh, and W. Kim. 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J. Mater. Sci. Mater. Med. 20:229–234, 2009.

    Article  CAS  PubMed  Google Scholar 

  72. Park, C. H., H. F. Rios, Q. Jin, M. E. Bland, C. L. Flanagan, S. J. Hollister, and W. V. Giannobile. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 31:5945–5952, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Park, C. H., H. F. Rios, Q. Jin, J. V. Sugai, M. Padial-molina, A. D. Taut, C. L. Flanagan, S. J. Hollister, and W. V. Giannobile. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials 33:137–145, 2012.

    Article  CAS  PubMed  Google Scholar 

  74. Rumpler, M., A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl. The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface 5:1173–1180, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rumpler, M., A. Woesz, F. Varga, I. Manjubala, K. Klaushofer, and P. Fratzl. Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds. J. Biomed. Mater. Res. 81A:40–50, 2007.

    Article  CAS  Google Scholar 

  76. Runyon, M. K., B. L. Johnson-Kerner, C. J. Kastrup, T. G. Van Ha, and R. F. Ismagilov. Propagation of blood clotting in the complex biochemical network of hemostasis is described by a simple mechanism. J. Am. Chem. Soc. 129:7014–7015, 2007.

    Article  CAS  PubMed  Google Scholar 

  77. Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. A process to make collagen scaffolds with an artificial circulatory system using rapid prototyping. Mater. Res. Soc. Symp. Proc. p. 758, 2002.

  78. Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. A Process to Make Collagen Scaffolds with an Artificial Circulatory System using Rapid Prototyping. Mater. Res. Soc. Symp. Proc., 2002.

  79. Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24:1487–1497, 2003.

    Article  CAS  PubMed  Google Scholar 

  80. Saito, E., H. Kang, J. M. Taboas, A. Diggs, C. L. Flanagan, and S. J. Hollister. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications. J. Mater. Sci. Mater. Med. 21:2371–2383, 2010; (Image (Table 2) was reprinted with permission from Springer.).

    Article  CAS  PubMed  Google Scholar 

  81. Schumacher, M., U. Deisinger, R. Detsch, and G. Ziegler. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. J. Mater. Sci. Mater. Med. 21:3119–3127, 2010.

    Article  CAS  PubMed  Google Scholar 

  82. Schumacher, M., F. Uhl, R. Detsch, U. Deisinger, and G. Ziegler. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 21:3039–3048, 2010.

    Article  CAS  PubMed  Google Scholar 

  83. Seol, Y. J., J. Y. Kim, E. K. Park, S. Y. Kim, and D. W. Cho. Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology. Microelectron. Eng. 86:1443–1446, 2009.

    Article  CAS  Google Scholar 

  84. Skoog, S. A., P. L. Goering, and R. J. Narayan. Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25:845–856, 2013.

    Article  PubMed  CAS  Google Scholar 

  85. Sodian, R., M. Loebe, A. Hein, D. P. Martin, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, T. Lueth, and R. Hetzer. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. Am. Soc. Artif. Intern. Organs J. 48:12–16, 2002.

    Article  Google Scholar 

  86. Sodian, R., J. S. Sperling, D. P. Martin, A. Egozy, U. Stock, J. E. Mayer, and J. P. Vacanti. Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 6:183–188, 2000.

    Article  CAS  PubMed  Google Scholar 

  87. Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194, 2003.

    Article  CAS  PubMed  Google Scholar 

  88. Tan, J. Y., C. K. Chua, and K. F. Leong. Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual Phys. Prototyp. 5:45–53, 2010.

    Article  Google Scholar 

  89. Tan, J. Y., C. K. Chua, and K. F. Leong. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect. Rapid Prototyp. Tech. 15:83–96, 2013. doi:10.1007/s10544-012-9690-3; (Image (Table 1) was reprinted with permission from Elsevier).

    CAS  Google Scholar 

  90. Therriault, D., R. F. Shepherd, S. R. White, and J. A. Lewis. Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv. Mater. 17:395–399, 2005.

    Article  CAS  Google Scholar 

  91. Therriault, D., S. R. White, and J. A. Lewis. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2:265–271, 2003.

    Article  CAS  PubMed  Google Scholar 

  92. Torgersen, J., A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl. Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt. 17:105008, 2012.

    Article  PubMed  Google Scholar 

  93. Uchida, T., S. Ikeda, H. Oura, M. Tada, T. Nakano, T. Fukuda, T. Matsuda, M. Negoro, and F. Arai. Development of biodegradable scaffolds based on patient-specific arterial configuration. J. Biotechnol. 133:213–218, 2008.

    Article  CAS  PubMed  Google Scholar 

  94. Van Den Bulcke, A. I., B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38, 2000.

    Article  CAS  Google Scholar 

  95. Van Hoorick, J., H. Declercq, A. De Muynck, A. Houben, L. Van Hoorebeke, R. Cornelissen, J. Van Erps, H. Thienpont, P. Dubruel, and S. Van Vlierberghe. Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds. J. Mater. Sci. Mater. Med. 26:247, 2015.

    Article  PubMed  CAS  Google Scholar 

  96. Van Rie, J., H. Declercq, J. Van Hoorick, M. Dierick, L. Van Hoorebeke, R. Cornelissen, H. Thienpont, P. Dubruel, and S. Van Vlierberghe. Cryogel-PCL combination scaffolds for bone tissue repair. J. Mater. Sci. Mater. Med. 26:5465, 2015.

    Article  CAS  Google Scholar 

  97. Van Vlierberghe, S., V. Cnudde, P. Dubruel, B. Masschaele, A. Cosijns, I. De Paepe, P. J. S. Jacobs, L. Van Hoorebeke, J. P. Remon, and E. Schacht. Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis. Biomacromolecules 8:331–337, 2007.

    Article  PubMed  CAS  Google Scholar 

  98. Van Vlierberghe, S., P. Dubruel, E. Lippens, B. Masschaele, L. Van Hoorebeke, M. Cornelissen, R. Unger, C. J. Kirkpatrick, and E. Schacht. Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. J. Mater. Sci. Mater. Med. 19:1459–1466, 2008.

    Article  PubMed  CAS  Google Scholar 

  99. Van Vlierberghe, S., P. Dubruel, and E. Schacht. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408, 2011.

    Article  PubMed  CAS  Google Scholar 

  100. Van Vlierberghe, S., B. Fritzinger, J. C. Martins, and P. Dubruel. Hydrogel network formation revised: high-resolution magic angle spinning nuclear magnetic resonance as a powerful tool for measuring absolute hydrogel cross-link efficiencies. Appl. Spectrosc. 64:1176–1180, 2010.

    Article  PubMed  Google Scholar 

  101. Van Vlierberghe, S., E. Schacht, and P. Dubruel. Reversible gelatin-based hydrogels: finetuning of material properties. Eur. Polym. J. 47:1039–1047, 2011.

    Article  CAS  Google Scholar 

  102. Verschooten, T., H. Ottevaere, M. Vervaeke, J. Van Erps, and H. Thienpont. Proof-of-concept demonstration of a total internal reflection based module for fluorescence and absorbance detection using a 3D-printed syringe pump. Proc. SPIE 9130:91300E–91300E-11, 2014.

    Article  Google Scholar 

  103. Vig, A. L., T. Mäkelä, P. Majander, V. Lambertini, J. Ahopelto, and A. Kristensen. Roll-to-roll fabricated lab-on-a-chip devices. J. Micromech. Microeng. 21:035006, 2011.

    Article  CAS  Google Scholar 

  104. Wang, P., J. Hu, and P. X. Ma. The engineering of patient-specific, anatomically shaped, digits. Biomaterials 30:2735–2740, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wilson, C. E., J. D. De Bruijn, C. A. Van Blitterswijk, A. J. Verbout, W. J. A. Dhert, J. D. de Bruijn, C. A. van Blitterswijk, A. J. Verbout, and W. J. A. Dhert. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J. Biomed. Mater. Res. A 68:1–10, 2003.

    Google Scholar 

  106. Woesz, A., M. Rumpler, J. Stampfl, F. Varga, N. Fratzl-Zelman, P. Roschger, K. Klaushofer, and P. Fratzl. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Mater. Sci. Eng., C 25:181–186, 2005; (Image (Table 2) was reprinted with permission from Springer).

    Article  CAS  Google Scholar 

  107. Woodfield, T. B. F., J. Malda, J. de Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161, 2004.

    Article  CAS  PubMed  Google Scholar 

  108. Wu, W., C. J. Hansen, A. M. Aragón, P. H. Geubelle, S. R. White, and J. A. Lewis. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6:739, 2010.

    Article  CAS  Google Scholar 

  109. Yang, S., K.-F. Leong, D. Zhaohui, and C. Chua. Review the design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.

    Article  CAS  PubMed  Google Scholar 

  110. Yeong, W., C. Chua, K. Leong, M. Chandrasekaran, and M. Lee. Comparison of drying methods in the fabrication of collagen scaffold via indirect. Rapid Prototyp. 82:260–266, 2006. doi:10.1002/jbmb.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of Ghent University, the UGent Multidisciplinary Research Partnership Nano-and Biophotonics, the Vrije Universiteit Brussel and Methusalem. Jasper Van Hoorick and Sandra Van Vlierberghe would like to acknowledge the Research Foundation Flanders (FWO, Belgium) for financial support under the form of respectively a PhD Grant and several Research Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dubruel.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Annemie Houben and Jasper Van Hoorick have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houben, A., Van Hoorick, J., Van Erps, J. et al. Indirect Rapid Prototyping: Opening Up Unprecedented Opportunities in Scaffold Design and Applications. Ann Biomed Eng 45, 58–83 (2017). https://doi.org/10.1007/s10439-016-1610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1610-x

Keywords

Navigation