Skip to main content
Log in

The dependence of tear behaviour on the microstructure of biaxially drawn polyester film

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structure-property relationship between a biaxially oriented film from poly(ethylene terephthalate) and its fracture behaviour measured using the Trouser Tear method, has been explored. X-ray diffraction (XRD) was used to characterise the orientation distribution of crystalline and non-crystalline material in the plane of the film and compared with the fracture energy, G c measured in four directions during tearing. The fracture energy averaged over the four directions ranged between 12 and 25 kJ m−2, and was found to correlate closely to the draw ratio during manufacture and therefore the degree of molecular orientation. However the individual values of G c displayed a further level of complexity.

The expected anisotropic character of the fracture energy was found to change systematically as a function of position across the original width of manufactured film. This feature compared well with the underlying, crystalline orientation distribution and provided strong evidence that under the mode III deformation of the tear test, the fracture mechanism involves the amorphous-crystallite surface boundary.

Further support for this mechanism was provided by a simple model which, based on this assumption was shown to predict reliably, the anisotropic character of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. "ASTM D1938–67, Annual Book of ASTM Standards" (American Society for Testing and Materials, Philadelphia, 1986).

  2. A. G. Thomas, J. Polym. Sci. 18(1955) 177.

    Google Scholar 

  3. H. W. Greensmith, L. Mullins and A. G. Thomas, Trans. Soc. Rheol. 4(1960) 179.

    Google Scholar 

  4. J. A. Hinkley and C. A. Hoogstraten, J. Mater. Sci. 221987) 4422.

    Google Scholar 

  5. R.-Y. Wu, L. D. Mccarthy and Z. H. Stachurski, Int. J. Fract. 68(1994) 141.

    Google Scholar 

  6. G. Dhont, A. Chergui and F.-G. Buchholz, Eng. Fract. Mech. 68(2001) 383.

    Google Scholar 

  7. P. I. Vincent, in "Encyclopedia of Polymer Science and Technology," edited by N. M. Bikales (Wiley, New York, 1967) Vol. 7.

    Google Scholar 

  8. D.-S. Chui, A. N. Gent and J. R. white, J. Mater. Sci. 19(1984) 2622.

    Google Scholar 

  9. A. N. Gent and J. Jeong, ibid. 21(1986) 355.

    Google Scholar 

  10. M. Kono, T. Ogata and M. Nomura, Patent JP49058172 (1974).

  11. R. W. Zolg, Polym. Eng. Sci. (1967) 194.

  12. J. Karger-Kocsis, in "Handbook Thermoplastic Polyesters," edited by S. Fakirov (Wiley-VCH, Weinheim, 2002) Vol. 1.

    Google Scholar 

  13. J. Karger-Kocsis and T. Czigany, Polymer 37(1996) 2433.

    Google Scholar 

  14. W. A. Macdonald, D. H. Mackerron and D. W. Brooks, in "PET Packaging Technology," edited by D. W. Brooks and G. A. Giles (Sheffield Academic Press, Sheffield, 2002).

  15. C. J. Heffelfinger and R. L. Burton, J. Polym. Sci. 47(1960) 289.

    Google Scholar 

  16. G. H. Kim, C.-K. Kang, C. G. Chang and D. W. Ihm, Eur. Polym. J. 33(1997) 1633.

    Google Scholar 

  17. A. Ajji, K. C. Cole, M. M. Dumoulin and J. Brisson, Polymer 36(1995) 4023.

    Google Scholar 

  18. A. C. Chang, S. P. Chum, A. Hiltner and E. Baer, ibid. 43(2002) 6515.

    Google Scholar 

  19. D. Bollen, J. Deneir, E. Aernoudt and W. Huylle, J. Mater. Sci. 24(1989) 2957.

    Google Scholar 

  20. Z.-S. Fu, Z.-Q. Fan, Y.-Q. Zhang and L.-X. Feng, Eur. Polym. J. 39(2003) 795.

    Google Scholar 

  21. Y. X. Gan, H. Aglan, P. Faughnan and C. Bryan, J. Rein. Plast. Comp. 20(2001) 766.

    Google Scholar 

  22. C. Arcona and T. A. Dow, J. Mater. Sci. 31(1996) 1327.

    Google Scholar 

  23. K. Tsunashima, K. Toyoda and T. Yoshii, in "Film Processing," edited by T. Kanai and G. A. Campbell (Hanser, Munich, 1999).

    Google Scholar 

  24. J. B. F. De Champchesnel, J. F. Tassin, L. Monnerie and P. Sergot, Polymer 38(1997) 4165.

    Google Scholar 

  25. J. B. F. De Champchesnel, J. F. Tassin, D. I. Bower, I. M. Ward and G. Lorentz, ibid. 35(1994) 4092.

    Google Scholar 

  26. H. Chang, J. M. Schultz and R. M. Gohil, J. Macromol. Sci. B32(1993) 99.

    Google Scholar 

  27. R. Pendlebury, "The Morphology of Oriented Poly(ethylene terephthalate) Film," PhD Thesis, University of Teesside, 1996.

  28. P. M. Henrichs, Macromolecules 20(1987) 2099.

    Google Scholar 

  29. J. S. S. Wong, D. Ferrer-Balas, R. K. Y. Li, Y-W. Mai, M. L. Maspoch and H.-J. Sue, Acta Materialia 51(2003) 4929.

    Google Scholar 

  30. J. Jancar, Adv. Polym. Sci. 1(1999) 139.

    Google Scholar 

  31. C. Martin, "X-ray Fibre Diffraction Studies of Crystallisation in Forward-Drawn Poly(ethylene terephthalate) Films," MPhil Thesis, University of Keele, 1994.

  32. D. Salem, Polymer 33(1992) 3182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuusipalo, J., Savijärvi, AM., Norval, S. et al. The dependence of tear behaviour on the microstructure of biaxially drawn polyester film. Journal of Materials Science 39, 6909–6919 (2004). https://doi.org/10.1023/B:JMSC.0000047532.34562.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000047532.34562.bc

Keywords

Navigation