Skip to main content
Log in

Scanning electron acoustic microscopy (SEAM): A technique for the detection of contact-induced surface & sub-surface cracks

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A variant of the scanning acoustic microscopy technique, scanning electron acoustic microscopy (SEAM), uses a pulsed electron beam in a conventional scanning electron microscope (SEM) to generate elastic waves near the surface of the sample. Conveniently for studies of surface damage, the contrast-generating processes are at a depth commensurate with the thickness of many thin hard ceramic coatings and the typical depths of fatigue-induced cracks in both gears and rolling element bearing systems.

Using examples from our studies of contact damage induced in thin hard coated systems and gears, this paper will demonstrate the applicability of SEAM techniques to the study of near-surface damage in coated systems (coating fracture and debonding) and gears (fatigue damage). We show that clear contrast can arise from cracks oriented both parallel to and, sometimes, perpendicular to the surfaces of many samples, and show that useful information can be provided regarding the debonding of coatings. It has also been found possible to delineate sub-surface contact and contact fatigue cracks allowing some information regarding crack orientation and extent to be deduced without the need for either serial or vertical sectioning of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. GILMORE, in"Concise Encyclopedia of Materials Characterisation," edited by R. W. Cahn and E. Lifshin (Pergamon, Oxford, 1993) p. 4.

    Google Scholar 

  2. D. E. W. STONE and B. CLARKE, in"Concise Encyclopedia of Materials Characterisation," edited by R. W. Cahn and E. Lifshin (Pergamon, Oxford, 1993) p. 58.

    Google Scholar 

  3. G. A. D. BRIGGS,"Acoustic Microscopy" (Oxford University Press, Oxford, 1992).

    Google Scholar 

  4. D. E. NEWBURY, D. C. JOY, P. ECHLIN, C. E. FIORI and J. I. GOLDSTEIN,in "Advanced Scanning Electron Microscopy and Microanalysis" (Plenum, New York, 1986) p. 45.

    Google Scholar 

  5. T. F. PAGE, Inst. Phy. Conf. Ser. (UK) 138 (1993) 295.

    Google Scholar 

  6. F. I. HUMPHRIES, J. Microscopy 195 (1999) 170.

    Google Scholar 

  7. B. A. SHAW, J. T. EVANS and T. F. PAGE, J. Mats. Sci. iLetts. 13 (1994) 1551.

    Google Scholar 

  8. T. F. PAGE, "Festschrift for Sir Robert Honeycombe," edited by J. A. Charles and G. C. Smith (The Institute of Materials, London, 1992) p. 337.

    Google Scholar 

  9. D. G. DAVIES, Phil. Trans. Roy. Soc. Lond. iA 320 (1986) 243.

    Google Scholar 

  10. L. J. BALK, Adv. Electron Electron. Phys. 71 (1988) 1.

    Google Scholar 

  11. E. BRANDIS and A. ROSENCWAIG, Appl. Phys. Lett. i 37 (1980) 98.

    Google Scholar 

  12. G. S. CARGILL, Nature, Lonid. 286 (1980) 690.

    Google Scholar 

  13. A. ROSENCWAIG, in"Scanned Image Microscopy," edited by A. E. Ash (Academic Press, London, 1980) p. 291.

    Google Scholar 

  14. Idem., Scann. Electron. Microsc. IV (SEM, Inc. Chicago) (1984) 1611.

    Google Scholar 

  15. L. J. BALK, M. DOMNIK and M. SCHOTTLER, Inst. Phys. iConf. Ser. (UK) 93 (1988) 219.

    Google Scholar 

  16. G. S. CARGILL, in"Scanned Image Microscopy," edited by E. A. Ash (Academic Press, London, 1980) p. 319.

    Google Scholar 

  17. A. ROSENCWAIG, Science i 218 (1982) 223.

    Google Scholar 

  18. A. ROSENCWAIG and R. M. WHITE, Appl. Phys. Letts. i 38 (1981) 165.

    Google Scholar 

  19. M. K. THOMAS, R. C. FARROW and D. C. JOY, Bell Labs Report TM 82-11526-9 (1982).

  20. D. C. JOY, Inst. Phys. Conf. Series 93(1988) 23.

    Google Scholar 

  21. L. J. BALK, D. G. DAVIES and N. KULTSCHER, Phys. iStatus Solidi A 82 (1984) 23.

    Google Scholar 

  22. E. D. BOYES, Inst. Phys. Conf. Seri. 98 (1989) 439.

    Google Scholar 

  23. D. C. JOY,"Monte Carlo Modelling for Electron Microscopy and Microanalysis" (Oxford University Press, Oxford, 1995).

    Google Scholar 

  24. T. F. PAGE and P. M. RAMSEY, unpublished work.

  25. J. C. KNIGHT, T. F. PAGE and H. W. CHANDLER, Surf. iCoat. Tech. 49 (1991) 519.

    Google Scholar 

  26. P. M. RAMSEY and T. F. PAGE, unpublished work.

  27. J. C. KNIGHT, T. F. PAGE, H. W. CHANDLER and P. M. RAMSEY in "Designing Ceramic Interfaces II," edited by S. D. Peteves (Official Publication of the EC, Physical Sciences EUR 15306, 1993) p. 253.

  28. J. C. KNIGHT and T. F. PAGE, Surf. Coat. Tech. 53 (1992) 121.

    Google Scholar 

  29. S. V. HAINSWORTH, M. R. MCGURK and T. F. PAGE,ibid. 102 (1998) 97.

    Google Scholar 

  30. P. C. TWIGG and T. F. PAGE, ibid. 68/69 (1994) 453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, T.F., Shaw, B.A. Scanning electron acoustic microscopy (SEAM): A technique for the detection of contact-induced surface & sub-surface cracks. Journal of Materials Science 39, 6791–6805 (2004). https://doi.org/10.1023/B:JMSC.0000045607.19879.a4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000045607.19879.a4

Keywords

Navigation