Skip to main content
Log in

Acoustic-Emission Diagnostics of Corrosion Defects in Materials (a Survey). Part. 1. Detection of Electrochemical Corrosion and Corrosion Fatigue

  • Published:
Materials Science Aims and scope

We analyze the main aspects of acoustic-emission diagnostics of the corrosion processes in structural materials and present the results of numerical investigations of the electrochemical corrosion by the method of acoustic emission. We also discuss the applicability of the method to the investigation of the corrosion fatigue of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. G. B. Muravin, L. М. Lezvinskaya, N. О. Makarova, and G. S. Pavlovskaya, “Problems of acoustic-emission diagnostics of the corrosion process (a survey),” Defektoskopiya, No. 2, 18–28 (1990).

  2. A. V. Bakulin and V. I. Popov, “Acoustic emission under the conditions of anodic oxidation of aluminum and titanium,” Zashch. Met., 6, No. 6, 824–827 (1985).

    Google Scholar 

  3. S. Yuyama, “Application of acoustic emission to the problems caused by corrosion,” Boshoku Gijutsu (Corros. Eng.), 35, No. 3, 163–170 (1986).

    CAS  Google Scholar 

  4. M. S. Weng, S. E. Dunn, W. H. Hartt, and R. P. Brown, “Application of acoustic emission to detection of reinforcing steel corrosion in concrete,” Corrosion, 38, Issue 1, 9–14 (1982).

    Article  CAS  Google Scholar 

  5. R. C. Newman and K. Sieradzki, “Correlation of acoustic and electrochemical noise in the stress-corrosion cracking of α -brass,” Scr. Metall., 17, 621–624 (1983).

    Article  CAS  Google Scholar 

  6. Y. Suzuki, S. Tsujikawa, and J. Hisamatsu, “Studies on the mechanism of stress corrosion cracking of pure copper by using acoustic emission technique,” Boshoku Gijutsu (Corros. Eng.), 25, No. 3, 155 (1976).

    Article  CAS  Google Scholar 

  7. S. Yuyama, T. Kishi, and Y. Hisamatsu, “Corrosion fatigue characteristics of 304-stainless steel and AE analysis during the process of monitoring of cracking and AE sources,” J. Jap. Inst. Met., 46, No. 1, 85–93 (1982).

    Article  CAS  Google Scholar 

  8. H. Kusanagi, H. Kimura, and H. Sasaki, “Stress effect on the magnitude of acoustic emission during magnetization of ferromagnetic materials,” J. Acoust. Soc. Amer., 64, 170–175 (1978).

    Article  Google Scholar 

  9. S. Yuyama, T. Kishi, and Y. Hisamatsu, “AE analysis during corrosion, stress corrosion cracking, and corrosion fatigue processes,” J. Acoust. Emission, 2, No. 1-2, 71–93 (1983).

    CAS  Google Scholar 

  10. V. R. Skal’s’kyi and O. E. Andreikiv, Evaluation of the Bulk Damage to the Materials by the Method of Acoustic Emission [in Ukrainian], Publishing Center of the I. Franko Lviv National University, Lviv (2006).

  11. O. E. Andreikiv, V. R. Skal’s’kyi, and G. T. Sulym, Theoretical Foundations of the Method of Acoustic Emission in Fracture Mechanics [in Ukrainian], Spolom, Lviv (2007).

  12. Z. T. Nazarchuk and V. R. Skal’s’kyi, Acoustic-Emission Diagnostics of Structural Elements [in Ukrainian], Vol. 1: Theoretical Foundations of the Method of Acoustic Emission, Naukova Dumka, Kyiv (2009).

  13. V. R. Skal’s’kyi, V. V. Bozhydarnik, and O. M. Stankevych, Acoustic-Emission Diagnostics of Microfracture of Structural Materials [in Ukrainian], Naukova Dumka, Kyiv (2014).

    Google Scholar 

  14. T. W. Retting and M. J. Felsen, “Method of acoustic emission for monitoring corrosion reactions,” Corrosion, 32, No. 4, 121–126 (1976).

    Article  CAS  Google Scholar 

  15. V. А. Druchenko, V. М. Novakovskii, А. K. Chirva, N. А. Khanukov, and A. M. Berdnikov, “On the microacoustics of corrosion processes,” Zashch. Met., 13, No. 3, 236–240 (1977).

    Google Scholar 

  16. F. Mansfeld and P. J. Stocker, “Acoustic emission from corroding electrodes,” Corrosion, 35, No. 12, 541–544 (1979).

    Article  CAS  Google Scholar 

  17. J. M. Rodgers, “The developing role of acoustic emission in aircraft maintenance and structural integrity,” in: Proc. of the Fifth Internat. Acoustic Emission Symp., Tokyo (1980), pp. 537–549.

  18. I. G. Scott and L. Wilson, “Simple acoustic emission test for the detection of corrosion,” Austral. Corros. Eng., 23, No. 5, 9–13 (1979).

    CAS  Google Scholar 

  19. I. G. Scott, “Acoustic emission and corrosion,” in: Proc. of the 9th World Conf. on Nondestructive Testing, Melbourne (1979), pp. 46–53.

  20. C. B. Bargeron and R. B. Givens, “Precursive blistering in the localized corrosion of aluminum,” Corrosion, 36, No. 11, 618–625 (1980).

    Article  CAS  Google Scholar 

  21. S. H. Сarpenter and C. R. Heiple, “Acoustic emission generated by dislocation mechanism during the deformation of metals,” J. Acoust. Soc. Amer., 64, S155 (1978).

    Article  Google Scholar 

  22. T. Kishi, “Acoustic emission and inhomogeneous deformation in plastic deformation,” J. Acoust. Soc. Amer., 64, S155 (1978).

    Article  Google Scholar 

  23. S.-Y. S. Hsu and K. Ono, “Temperature dependence of acoustic emission in an austenitic stainless steel,” Mater. Sci. Eng., 38, No. 2, 187–191 (1979).

    Article  CAS  Google Scholar 

  24. S.-Y. S. Hsu and K. Ono, “Acoustic emission of plastic flow. I. Metals,” in: Proc. of the Fifth Internat. Acoustic Emission Symp., Tokyo (1980), pp. 283–294.

  25. K. Takashima, Y. Higo, and S. Nunomura, “Acoustic emission during the martensite transformation of 304 stainless steel,” in: Proc. of the Fifth Internat. Acoustic Emission Symp., Tokyo (1980), pp. 261–270.

  26. K. Ono, R. Randy, and C. Ouchi, “On the amplitude distribution of burst emission due to MNS inclusions in HSLA steels,” in: Proc. of the Fourth Internat. Acoustic Emission Symp., Tokyo (1978), pp. 33–46.

  27. S. Yuyama, Y. Hisamatsu, T. Kishi, and T. Kakimi, “SCC characteristics of Ti–6Al–4V alloy and analysis of cracking process by visual observations and AE technique,” Boshoku Gijutsu (Corros. Eng.), 30, 684–690 (1981).

    CAS  Google Scholar 

  28. S. Yuyama, T. Kishi, Y. Hisamatsu, and T. Kakimi, “Acoustic emission from environmental cracking of a high strength titanium alloy,” J. Acoust. Emiss., 2, No. 1-2, 19–27 (1983).

    Google Scholar 

  29. S. Yuyama, T. Kishi, Y. Hisamatsu, and T. Kakimi, “Effects of environments, mechanical conditions, and sensitization on crack growth and AE behavior during corrosion fatigue process of sensitized 304-stainless steel (AE source identification by SEM observations),” J. Jap. Inst. Met., 46, No. 5, 509 (1982).

    Article  CAS  Google Scholar 

  30. W. E. Swindlehurts, “Carbide cracking as a source of acoustic emission in steel,” J. Mater. Sci., 13, No. 1, 209–212 (1978).

    Article  Google Scholar 

  31. M. A. Hamstad and A. K. Mukherjee, “Acoustic emission testing of unflawed 7075-T6 aluminum,” J. Test. Eval., 3, 167–72 (1975).

    Article  CAS  Google Scholar 

  32. V. R. Skal’s’kyi and P. M Koval,’ Acoustic Emission in the Course of Fracture of Materials, Products, and Structures. Methodological Aspects of Selection and Processing of Information [in Ukrainian], Spolom, Lviv (2005).

  33. W. W. Gerberich and C. E. Hartbower, “Some observations on stress wave emission as a measure of crack growth,” Int. J. Fract. Mech., 3, No. 3, 185–192 (1967).

    Article  Google Scholar 

  34. H. Nitsuma, M. Kikuchi, H. Takahashi, M. Suzuki, and R. Sato, “AE classification and micro pop-in cracking in fracture toughness test,” in: Proc. of the Fifth Internat. Acoustic Emission Symp., Tokyo (1980), pp. 411–421.

  35. A. Nozue and T. Kishi, “An acoustic emission study of the intergranular cracking of AISI 4340 steel,” J. Acoust. Emiss., 1, 1–6 (1982).

    CAS  Google Scholar 

  36. A. Nozue and T. Kishi, “Evaluation of hydrogen-induced cracking unit of AISI 4340 steel by acoustic emission technique,” J. Jap. Inst. Met., 45, No. 1, 1305–1309 (1981).

    Google Scholar 

  37. D. Jaffrey, “The failures of MnS inclusions in steel under uniaxial stress and their relevance to AE studies,” in: Proc. of the Fifth Internat. Acoustic Emission Symp., Tokyo (1980), pp. 249–261.

  38. K. Okajima and K. Ono, “Temperature dependence of anisotropic AE behavior of A533B steel,” in: Proc. of the Fifth Internat. Acoustic Emission Symp., Tokyo (1980), pp. 270–283.

  39. B. E. Wilde, C. D. Kim, and E. H. Phelps, “Some observations on the role of inclusions in the hydrogen induced blister cracking of linepipe steels in sulfide environments,” Corrosion, 36, No. 11, 625–632 (1980).

    Article  CAS  Google Scholar 

  40. N. A. Storozhenko and V. A. Druchenko, “Evaluation of the corrosion softening of 2Kh13 steel by the method of AE,” in Abstr. of the Republican Conf. “Resource-Saving Technologies in the Electrochemical Production” [in Ukrainian], Vol. 2, Kharkov (1987), p. 44.

  41. E. A. Culpan and A. G. Foley, “The detection of selective phase corrosion in cast nickel aluminium bronze by acoustic emission techniques,” J. Mater. Sci., 17, 953–964 (1982).

    Article  CAS  Google Scholar 

  42. A. Nozue, “Method for the analysis of AE signals emitted in the case of corrosion embrittlement,” Bull. Inst. Space Aeronaut. Sci., Univ. Tokyo, 16, No. 1, 767–780 (1980).

  43. A. S. Khanna and B. B. Jha, “Acoustic emission technique: an alternative method to study the brittle oxide formed on copper,” Oxid. Met., 27, 95–102 (1987).

    Article  CAS  Google Scholar 

  44. I. Blaguschek, “Schallemissionsmessungen bei der Korrosionsspreizung,” Ingernieurhochschulle Zittau, Wissenschaftliche Berichtle, 677, 9–11 (1986).

  45. K. H. W. Seah, K. B. Lim, C. H. Chew, and S. H. Teoh, “The correlation of acoustic emission with rate of corrosion,” Corros. Sci., 34, No. 10, 1707–1713 (1993).

    Article  CAS  Google Scholar 

  46. J. Kovac, A. Legat, C. Alaux, T. J. Marrow, and E. Govekar, “Correlations of electrochemical noise, acoustic emission, and com-plementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel,” Corros. Sci., 52, No. 6, 2015–2025 (2010).

    Article  CAS  Google Scholar 

  47. H. Mazille, R. Rothea, and C. Tronel, “An acoustic emission technique for monitoring pitting corrosion of austenitic stainless steels,” Corros. Sci., 37, No. 9, 1365–1375 (1995).

    Article  CAS  Google Scholar 

  48. K. Darowicki, A. Mirakowski, and S. Krakowiak, “Investigation of pitting corrosion of stainless steel by means of acoustic emission and potentiodynamic methods,” Corros. Sci., 45, 1747–1756 (2003).

    Article  CAS  Google Scholar 

  49. А. N. Kuz’min, А. V. Zhukov, N. F. Styukhin, V. G. Kharebov, and Е. G. Aksel’rod, “Acoustic-emission diagnostics of corrosion defects of pipelines,” Tekhnadzor, No. 7, 23–28 (2007).

  50. M. Fregonese, H. Idrissi, H. Mazille, L. Renaud, and Y. Cetre, “Initiation and propagation steps in pitting corrosion of austenitic stainless steels: monitoring by acoustic emission,” Corros. Sci., 43, 627–641 (2001).

    Article  CAS  Google Scholar 

  51. M. Fregonese, H. Idrissi, H. Mazille, L. Renaud, and Y. Cetre, “Monitoring pitting corrosion of AISI 316L austenitic stainless steel by acoustic emission technique: Choice of representative acoustic parameters,” J. Mater. Sci., 36, No. 3, 557–563 (2001).

    Article  CAS  Google Scholar 

  52. C. Jomdecha, A. Prateepasen, and P. Kaewtrakulpong, “Study on source location using an acoustic emission system for various corro-sion types,” NDT&E Int., 40, 584–593 (2007).

    Article  CAS  Google Scholar 

  53. A. Prateepasen, C. Jirarungsatean, and P. Tuengsook, “Identification of AE source in corrosion process,” Key Eng. Mater., 321–323, 545–548 (2006).

    Article  Google Scholar 

  54. A. Prateepasen, P. Kaewtrakulpong, and C. Jirarungsatean, “Semiparametric learning for classification of pitting corrosion detected by acoustic emission,” Key Eng. Mater., 321–323, 549–552 (2006).

    Article  Google Scholar 

  55. J. Xu, X. Wu, and E.-H. Han. “Acoustic emission during the electrochemical corrosion of 304 stainless steel in H2SO4,” Corros. Sci., 53, 448–457 (2011).

    Article  CAS  Google Scholar 

  56. Yu. B. Drobot, А. М. Lazarev, L. Yu. Odnopozov, and А. F. Khrustalev, “AE in the course of corrosion cracking of 08Kh18N10T steel,” Zashch. Met., 16, No. 1, 49–51 (1980).

    CAS  Google Scholar 

  57. A. V. Bakulin, S. N. Isaev, A. P. Tishkin, and A. M. Leksovskii, “Acoustic emission in initiation and propagation of the crack in an aluminum alloy under the effect of a corrosive medium,” Fiz.-Khim. Mekh. Mater., 25, No. 2, 74–79 (1989); English translation: Mater. Sci., 25, No. 2, 188–192 (1989).

  58. F. Bellenger, H. Maazille, and H. Idrissi, “Use of acoustic emission technique for the early detection of aluminum alloys exfoliation corrosion,” NDT & E Int., 35, 385–392 (2002).

    Article  CAS  Google Scholar 

  59. G. B. Muravin, Yu. M. Palei, N. O. Makarova, and I. G. Levitina, “Development of the acoustic-emission method for the identifica-tion of corrosion,” Defektoskopiya, No. 7, 58–65 (1991).

  60. C. E. Hartbower, C. F. Morais, W. G. Reuter, and P. P. Crimmins, “Acoustic emission from low-cycle high-stress intensity fatigue,” Eng. Fract. Mech., 5, 765–789 (1973).

    Article  Google Scholar 

  61. P. Mehdizadeh, “Assessment of corrosion fatigue damage by acoustic emission and periodic proof tests,” Mater. Evaluat., 34, 55– 63 (1976).

    Google Scholar 

  62. P. Jax and B. Richter, “Detection of corrosion fatigue by acoustic emission,” J. Acoust. Emiss., 2, No. 1-2, 29–39 (1983).

    Google Scholar 

  63. S. Yuyama, “Fundamental aspects of acoustic emission applications to the problems caused by corrosion,” in: Corrosion Monitoring in Industrial Plants Using Nondestructive Testing and Electrochemical Methods. ASTM STP 908, ASTM, Philadelphia (1986), pp. 43–74.

  64. S. Yuyama, Y. Hisamatsu, T. Kishi, and H. Nakasa, “AE analysis during corrosion, stress corrosion cracking, and corrosion fatigue processes on type 304 stainless steel,” in: Proc. of the Fifth Internat. Acoustic Emission Symp., Tokyo (1980), pp. 115–124.

  65. S. Yuyama, T. Kishi, and Y. Hisamatsu, “Fundamental aspects of AE monitoring on corrosion fatigue processes in austenitic stain-less steel,” J. Mater. Energy Syst., 5, No. 4, 212–221 (1984).

    Article  CAS  Google Scholar 

  66. S. Yuyama, T. Kishi, and Y. Hisamatsu, “Effect of environments, mechanical conditions, and materials characteristics on AE behav-ior during corrosion fatigue processes of austenitic stainless steel,” in: Proc. of the Sixth Internat. Acoustic Emission Symp., Tokyo (1982), pp. 115–125.

  67. H. Nakajima, T. Shoji, M. Kikuchi, H. Nitsuma, and M. Shindo, “Detecting acoustic emission during cyclic crack growth in simu-lated BWR environment,” in: Fatigue Crack Growth Measurement and Data Analysis. ASTM STP 738, ASTM, Philadelphia (1981), pp. 139–160.

  68. Z. F. Wang, Z. Zhu, and W. Ke, “Behavior of acoustic emission for low-strength structural steel during fatigue and corrosion fa-tigue,” Metall. Trans. A, 22A, 2677–2680 (1991).

    Article  CAS  Google Scholar 

  69. H. Idrissi and A. Limam, “Study and characterization by acoustic emission and electrochemical measurements of concrete deteriora-tion caused by reinforcement steel corrosion,” NDT & E Int., 36, No. 8, 563–569 (2003).

    Article  CAS  Google Scholar 

  70. S. Degala, P. Rizzo, K. Ramanathan, and K. A. Harries, “Acoustic emission monitoring of CFRP reinforced concrete slabs,” Constr. Build. Mater., 23, No. 5, 2016–2026 (2009).

    Article  Google Scholar 

  71. M. Ohtsu and Y. Tomoda, “Phenomenological model of corrosion process in reinforced concrete identified by acoustic emission,” ACI Mater. J., 105, No. 2, 194–199 (2008).

    CAS  Google Scholar 

  72. M. Di Benedetti, G. Loreto, F. Matta, and A. Nanni, “Acoustic emission monitoring of reinforced concrete under accelerated corro-sion,” J. Mater. Civil Eng., 25, No. 8, 1022–1029 (2013).

    Article  Google Scholar 

  73. Y. Kawasaki, T. Wakuda, T. Kobarai, and M. Ohtsu, “Corrosion mechanisms in reinforced concrete by acoustic emission,” Constr. Build. Mater., 48, 1240–1247 (2013).

    Article  Google Scholar 

  74. S. Patil, B. Karkare, and S. Goyal, “Acoustic emission vis-à-vis electrochemical techniques for corrosion monitoring of reinforced concrete element,” Constr. Build. Mater., No. 68, 326–332 (2014).

    Article  Google Scholar 

  75. Y. Kawasaki, Y. Tomoda, and M. Ohtsu, “AE monitoring of corrosion process in cyclic wet–dry test,” Constr. Build. Mater., No. 24, 2353–2357 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to І. Ya. Dolins’ka.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 53, No. 3, pp. 7–17, May–June, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skal’s’kyi, V.R., Nazarchuk, Z.Т., Dolins’ka, І.Y. et al. Acoustic-Emission Diagnostics of Corrosion Defects in Materials (a Survey). Part. 1. Detection of Electrochemical Corrosion and Corrosion Fatigue. Mater Sci 53, 295–305 (2017). https://doi.org/10.1007/s11003-017-0075-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-017-0075-x

Keywords

Navigation