Skip to main content
Log in

Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2-3 wt% Y2O3 ceramic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dense nanocrystalline ZrO2-3 wt% Y2O3 ceramics with grain sizes ranging between 23 to 130 nm were tested by ultrasonic pulse echo and Vickers hardness. The elastic modulus and hardness results were corrected for the residual porosity and the phase content. The corrected elastic moduli exhibited continuous decrease with decrease in the grain size. In contrast, no correlation was found between the corrected hardness and grain size. The percolative composite model was used to describe the changes in the elastic moduli in terms of percolation of the elastic wave through the intercrystalline phase at the percolation threshold. The absence of correlation with the hardness results was explained due to the other energy absorbing mechanisms such as microcracking beneath the indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Nieh, J. Wadsworth and F. Wakai, Inter. Mater. Rev. 36 (1991) 146.

    Google Scholar 

  2. F. Wakai and T. Nagano, J. Mater. Sci. 26 (1991) 241.

    Google Scholar 

  3. G. B. Prabhu and D. L. Bourell, Scr. Metall. Mater. 33 (1995) 761.

    Google Scholar 

  4. T. G. Langdon, Acta Metall. Mater. 42 (1994) 2437.

    Google Scholar 

  5. R. Chaim and M. Hefetz, J. Mater. Res. 13 (1998) 1875.

    Google Scholar 

  6. R. M. Spriggs, J. Amer. Ceram. Soc. 45 (1962) 454.

    Google Scholar 

  7. A. J. A. Winnubst, K. Keizer and A. J. Burggraaf, J. Mater. Sci. 18 (1983) 1958.

    Google Scholar 

  8. C. F. Smith and W. B. Crandall, J. Amer. Ceram. Soc. 47 (1964) 624.

    Google Scholar 

  9. N. G. Pace, G. A. Saunders, Z. Sumengen and J. S. Thorp, J. Mater. Sci. 4 (1969) 1106.

    Google Scholar 

  10. I. L. Chistyi, I. L. Fabelinskii, V. F. Kitaeva, V. V. Osiko, Yu. V. Pisarevskii, I. Sil'Vestrova and N. N. Sobolev, J. Raman Spect. 6 (1977) 183.

    Google Scholar 

  11. R. P. Ingel, R. W. Rice and D. Lewis, J. Amer. Ceram. Soc. 65 (1982) C-108.

    Google Scholar 

  12. H. M. Kandil, J. D. Greiner and J. F. Smith, ibid. 71 (1988) 265.

    Google Scholar 

  13. R. P. Ingel and D. Lewis III, ibid. 71 (1988) 265.

    Google Scholar 

  14. M. V. Nevitt, S.-K. Chan, J. Z. Liu, M. H. Grimsditch and Y. Fang, Physica B 150 (1988) 230.

    Google Scholar 

  15. S.-K. Chan, Y. Fang, M. Grimsditch, Z. Li, M. V. Nevitt, W. M. Robertson and E. S. Zouboulis, J. Amer. Ceram. Soc. 74 (1991) 1742.

    Google Scholar 

  16. R. P. Ingel and D. Lewis III, ibid. 69 (1986) 325.

    Google Scholar 

  17. R. Hill, Proc. Phys. Soc. London, Sect. A 65 (1952) 439.

    Google Scholar 

  18. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11 (1963) 123.

    Google Scholar 

  19. R. F. S. Hearman, “An Introduction to Applied Anisotropic Elasticity” (Oxford Univ. Press, Oxford, 1961) p. 27.

    Google Scholar 

  20. R. W. Rice, Treatise Mater. Sci. Tech. 2 (1977) 199.

    Google Scholar 

  21. Idem., Mater. Sci. Eng. A 73 (1985) 215.

    Google Scholar 

  22. S. W. Lee, S. M. Hsu and M. C. Shen, J. Amer. Ceram. Soc. 76 (1993) 1937.

    Google Scholar 

  23. R. W. Rice, C. Cm. Wu and F. Borchelt, ibid. 77 (1994) 2539.

    Google Scholar 

  24. R. C. First and A. H. Heuer, ibid. 75 (1992) 2302.

    Google Scholar 

  25. R. Chaim, in “Mechanical Properties and Deformation Behavior of Materials with Ultra-fine Microstructures,” edited by M. Nastasi, D. M. Parkin and H. Gleiter (Kluwer, Dordrecht, 1993) p. 547.

    Google Scholar 

  26. T. Sakuma and M. Shimada, J. Mater. Sci. 20 (1985) 1178.

    Google Scholar 

  27. M. Waller, J. Diehl and H.-E. Schaefer, Phil. Mag. A 63 (1991) 527.

    Google Scholar 

  28. C. Suryanarayana, D. Mukhhopadhyay, S. N. Patanker and F. H. Froes, J. Mater. Res. 7 (1992) 2114.

    Google Scholar 

  29. N. P. Kobelev, Ya. M. Soifer, R. A. Andrievski and B. Gunther, Nanostr. Mater. 2 (1993) 537.

    Google Scholar 

  30. J. Lian, B. Baudelet and A. A. Nazarov, Mater. Sci. Eng. A 172 (1993) 23.

    Google Scholar 

  31. X. Y. Qin, X. R. Zhang, G. S. Cheng and L. D. Zhang, Nanostr. Mater. 10 (1998) 661.

    Google Scholar 

  32. S. Sakai, H. Tanimoto and H. Mizubayashi, Acta Mater. 47 (1999) 211.

    Google Scholar 

  33. H. S. Cao, R. Bonnet, J. J. Hunsinger and O. Elkedim, Scripta Mater. 48 (2003) 531.

    Google Scholar 

  34. C.-W. Nan, X. Li, K. Cai and J. Tong, J. Mater. Sci. Lett. 17 (1998) 1917.

    Google Scholar 

  35. J. Wang, M. Rainforth and R. Stevens, Br. Ceram. Trans. J. 88 (1989) 1.

    Google Scholar 

  36. K. Lu, H. Y. Zhang, Y. Zhong and H. J. Fecht, J. Mater. Res. 12 (1997) 923.

    Google Scholar 

  37. A. Barvo-Leon, Y. Morikawa, M. Kawahara and M. J. Mayo, Acta Mater. 50 (2002) 4555.

    Google Scholar 

  38. D. Chen, Mater. Sci. Eng. A 190 (1995) 193.

    Google Scholar 

  39. J. Wang, D. Wolf, S. R. Philpot and H. Gleiter, Phil. Mag. A 73 (1996) 517.

    Google Scholar 

  40. P. Heino and E. Ristolaninen, ibid. 81 (2001) 957.

    Google Scholar 

  41. T. D. Shen, C. C. Koch, T. Y. Tsui and G. M. Pharr, J. Mater. Res. 10 (1995) 2892.

    Google Scholar 

  42. M. B. Bush, Mater. Sci. Eng. A 161 (1993) 127.

    Google Scholar 

  43. R. Chaim, J. Mater. Res. 12 (1997) 1828.

    Google Scholar 

  44. D. Deptuck, J. P. Harrison and P. Zawadzki, Phys. Rev. Lett. 54 (1985) 913.

    Google Scholar 

  45. R. Chaim, Unpublished work.

  46. B. A. Cottom and M. J. Mayo, Scr. Mater. 34 (1996) 809.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaim, R., Hefetz, M. Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2-3 wt% Y2O3 ceramic. Journal of Materials Science 39, 3057–3061 (2004). https://doi.org/10.1023/B:JMSC.0000025832.93840.b0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000025832.93840.b0

Keywords

Navigation