Skip to main content
Log in

The thermo-mechanical behaviour of Cu-Cr in-situ composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical response of in-situ copper-chromium composite was modelled using a deformation mechanism map approach. The stresses in each phase were predicted as a function of temperature and strain rate. From this the ratio of phase stresses, and hence the degree of load transfer, was obtained. The extent of load transfer and the predicted deformation modes of the two phases were then related to the expected failure mechanisms of the composite. Three modes of composite failure were predicted. Copper-chromium in-situ composites, and pure copper, were produced by a casting and swaging route. The mechanical properties were then characterised experimentally by tensile testing. Mechanical tests confirmed that the composite showed significantly higher strength than the unreinforced material. The observed failure modes of the composite were compared with the predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Lee, H. E. Carroll and A. F. Whitehouse, Mater. Sci. Tech. 16 (2000) 811.

    Google Scholar 

  2. K. L. Lee, A. F. Whitehouse, P. J. Withers and M. R. Daymond, Mater. Sci. Eng. A 348 (2003) 208.

    Google Scholar 

  3. K. L. Lee, A. F. Whitehouse, S. I. Hong and A. M. Russell, Accepted for publication in Metal & Mater Trans A vol. 35A, p. 695.

  4. K. L. Lee, A. F. Whitehouse and A. C. F. Cocks, ICCM 12 Paris (1999).

  5. K. L. Lee, Composites: Part A. 34(12) (2003) 1235.

    Google Scholar 

  6. S. I. Hong, M. A. Hill, Y. Sakai, J. T. Wood and J. D. Embury, Acta Metall. Mater. 43(9) (1995) 3313.

    Google Scholar 

  7. J. D. Verhoeven, W. A. Spitzig, L. L. Jones, H. L. Downing, C. L. Trybus, E. D. Gibson, L. S. Chumbley, L. G. Fritzemeier and G. D. Schnittgrund, J. Mater. Eng. 12(2) (1990) 127.

    Google Scholar 

  8. T. W. Ellis, S. T. Kim and J. D. Verhoeven, J. Mater. Engng. Perform. 4 (1995) 581.

    Google Scholar 

  9. C. Biselli and D. G. Morris, Mater. Sci. Eng. A 148(2) (1991) 163.

    Google Scholar 

  10. Y. Jin, K. Adachi, T. Takeuchi and H. G. Suzuki, ibid. 212(1) (1996) 149.

    Google Scholar 

  11. Idem., Metal. Mater. Trans. A 29(8) (1998) 2195.

    Google Scholar 

  12. H. J. Frost and M. F. Ashby, “Deformation Mechanism Maps—The Plasticity and Creep of Metals and Ceramics” (Oxford, Pergamon, 1982) p. 161.

    Google Scholar 

  13. D. L. Zhang, K. Mihara, E. Takakura and H. G. Suzuki, Mater. Sci. Eng. A 266(1/2) (1999) 99.

    Google Scholar 

  14. M. F. Ashby, Acta Metall. 20 (1972) 887.

    Google Scholar 

  15. K. L. Lee, A. F. Whitehouse, A. M. Russell, K. Wongpreedee, S. I. Hong and P. J. Withers, J. Mater. Sci. 38 (2003) 3437.

    Google Scholar 

  16. K. L. Lee, J. Quinta Da Fonseca, P. J. Withers, S. I. Hong and A. M. Russell, submitted to Scripta Mater.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.L. The thermo-mechanical behaviour of Cu-Cr in-situ composite. Journal of Materials Science 39, 3047–3055 (2004). https://doi.org/10.1023/B:JMSC.0000025831.58057.52

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000025831.58057.52

Keywords

Navigation