Skip to main content
Log in

Stress analysis in thermal barrier coatings subjected to long-term exposure in simulated turbine conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, ruby fluorescence spectroscopy has been demonstrated as a powerful technique for monitoring residual stress evolution in the thermally grown oxide scale in thermal barrier coating (TBC) systems. The measured residual stresses, in turn, can be used to monitor evolution of damage in the coatings. Effective use of this technology for real-time damage monitoring requires the identification of trends in measured stresses that can be used as indicators of damage evolution. The present work focuses on studying the evolution of residual stresses in TBC systems during long-term exposure to turbine operating conditions. The coatings are electron beam physical vapor deposited (EBPVD) and atmospheric plasma sprayed (APS) zirconia. The stress evolution in both EBPVD and APS coatings is analytically modeled by an approach that takes into consideration contributions due to both thermal mismatch and oxide growth. Microstructural changes in the TBC system are correlated with measured stress trends through comparison with the modeled stresses. The stress measurements and modeling provide insight into failure modes and mechanisms, and to identify critical features in the measured stress data that can be used as indicators of failure in TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Strangman, E. D. Felton and N. E. Ulion, Amer. Ceram. Soc. Bull. 56(8) (1977) 700.

    Google Scholar 

  2. S. M. Gupta and D. K. Gupta, J. Engr. Gas Turb. Power 111 (1989) 301.

    Google Scholar 

  3. T. M. Yonushonis, J. Thermal Spray Tech. 6(1) (1997) 50.

    Google Scholar 

  4. Z. Mutasim and W. Brentnall, ibid. 6(1) (1997) 105.

    Google Scholar 

  5. R. D. Maier, C. M. Scheuermann and C. W. Andrews, Amer. Ceram. Soc. Bull. 60(5) (1981) 555.

    Google Scholar 

  6. J. T. Demasi-Marcin, K. D. Sheffler and S. Bose, J. Engr. Gas Turb. Power 112 (1990) 521.

    Google Scholar 

  7. B.-C. Wu, E. Chang, S.-F. Chang and D. Tu, J. Amer. Ceram. Soc. 72(2) (1989) 212.

    Google Scholar 

  8. D. Zhu and R. A. Miller, Mater. Sci. Engr. A245 (1998) 212.

    Google Scholar 

  9. J. P. Singh, M. Sutaria and A. Chopra, Ceram. Engr. Sci. Proc. 19(4) (1998) 313.

    Google Scholar 

  10. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Petit, Prog. Mater. Sci. 46(5) (2001) 505.

    Google Scholar 

  11. X. Peng and D. R. Clarke, J. Amer. Ceram. Soc. 83(5) (2000) 1165.

    Google Scholar 

  12. A. Selcuk and A. Atkinson, Mater. Sci. Engr. A335 (2002) 147.

    Google Scholar 

  13. C.-H. Hsueh, J. A. Haynes, M. J. Lance, P. F. Becher, M. K. Ferber, E. R. Fuller, Jr., S. A. Langer, W. C. Carter and W. R. Cannon, J. Amer. Ceram. Soc. 82(4) (1999) 1073.

    Google Scholar 

  14. K. W. Schlichting, N. P. Padture, E. H. Jordan and M. Gell, Mater. Sci. Engr. A342 (2003) 120.

    Google Scholar 

  15. A. M. Karlsson, J. W. Hutchinson and A. G. Evans, ibid. A351 (2003) 244.

    Google Scholar 

  16. X. Chen, J. W. Hutchinson, M. Y. He and A. G. Evans, Acta Mater. 51 (2003) 2017.

    Google Scholar 

  17. D. B. Marshall, T. Noma and A. G. Evans, Comm. Amer. Ceram. Soc. 65(10) (1982) C175.

    Google Scholar 

  18. J. P. Singh, M. Sutaria and M. Ferber, Ceram. Engr. Sci. Proc. 18(4) (1997) 191.

    Google Scholar 

  19. Q. Ma and D. R. Clarke, J. Amer. Ceram. Soc. 76(6) (1993) 1433.

    Google Scholar 

  20. J. A. Haynes, M. K. Ferber, W. D. Porter and E. D. Rigney, Oxidation Met. 52(1/2) (1999) 31.

    Google Scholar 

  21. D. M. Lipkin and D. R. Clarke, ibid. 45(3/4) (1996) 267.

    Google Scholar 

  22. D. Renusch, M. Grimsditch, I. Koshelev, B. V. Veal and P. Y. Hou, ibid. 48(5/6) (1997) 471.

    Google Scholar 

  23. C.-H. Hsueh and E. R. Fuller, Jr., Scripta Mater. 42 (2000) 781.

    Google Scholar 

  24. R. L. Salganik, Izv. Akad. Nauk. SSSR. Mekh. Tverd. Tela. 8(4) (1973) 149.

    Google Scholar 

  25. D. P. H. Hasselman and J. P. Singh, Ceram. Bull. 58(9) (1979) 856.

    Google Scholar 

  26. M. Gell, K. Vaidyanathan, B. Barber, J. Cheng and E. Jordan, Metall. Mater. Trans. A 30A (1999) 427.

    Google Scholar 

  27. D. R. Clarke, R. J. Christensen and V. Tolpygo, Surf. Coat. Tech. 94/95 (1997) 89.

    Google Scholar 

  28. J. Cheng, E. H. Jordan, B. Barber and M. Gell, Acta. Mater. 46(16) (1998) 5839.

    Google Scholar 

  29. J. P. Singh, B. Nair, D. Renusch, M. Sutaria and M. Grimsditch, J. Amer. Ceram. Soc. 84(10) (2001) 2385.

    Google Scholar 

  30. B. G. Nair, J. P. Singh and M. Grimsditch, Ceram. Engr. Sci. Proc. 21(3) (2000), 133–141.

    Google Scholar 

  31. C.-H. Hsueh, J. A. Haynes, M. J. Lance, P. F. Becher, M. K. Ferber, E. R. Fuller, Jr., S. A. Langer, W. C. Carter and W. R. Cannon, J. Amer. Ceram. Soc. 82(4) (1999) 1073.

    Google Scholar 

  32. J. K. Wright, R. L. Williamson, D. Renusch, B. Veal, M. Grimsditch, P. Y. Hou and R. M. Cannon, Mater. Sci. Engr. A262 (1999) 246.

    Google Scholar 

  33. S. Uran, B. W. Veal, M. Grimsditch, J. Pearson and A. Berger, Oxidation Met. 54(1) (2000) 73.

    Google Scholar 

  34. M. J. Lance, J. A. Haynes, W. R. Cannon and M. K. Ferber, “Ceram. Trans. Nondestructive Evaluation of Ceramics,” edited by C. H. Schilling and J. N. Gray (Amer. Ceram. Soc. Inc., Westerville, OH, 1998) vol. 89, p. 229.

    Google Scholar 

  35. K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell and N. P. Padture, Mater. Sci. Engr. A291 (2000) 68.

    Google Scholar 

  36. A. M. Limarga, S. Widjaja, T. H. Yip and L. K. Teh, Surf. Coat. Tech. 153 (2002) 16.

    Google Scholar 

  37. K. Sfar, J. Aktaa and D. Munz, Mater. Sci. Engr. A333 (2002) 351.

    Google Scholar 

  38. R. C. Juvinall, in “Engineering Considerations of Stress, Strain and Strength,” edited by K. H. Hill, McGraw-Hill, New York, (1967) p. 112.

    Google Scholar 

  39. C. H. Hsueh and E. R. Fuller, Scripta Mater. 42 (2000) 781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, B.G., Singh, J.P. & Grimsditch, M. Stress analysis in thermal barrier coatings subjected to long-term exposure in simulated turbine conditions. Journal of Materials Science 39, 2043–2051 (2004). https://doi.org/10.1023/B:JMSC.0000017767.36955.5c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000017767.36955.5c

Keywords

Navigation