Skip to main content
Log in

Thermal properties of nylon6/ABS polymer blends: Compatibilizer effect

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nylon6/ABS binary blends are incompatible and need to be compatibilized to achieve better performance under impact tests. Poly(methyl methacrylate/maleic anhydride) (MMA-MA) is used in this work to compatibilize in situ nylon6/ABS immiscible blends. The MA functional groups, from MMA-MA copolymers, react with NH2 groups giving as products nylon molecules grafted to MMA-MA molecules. Those molecular species locate in the nylon6/ABS blend interfacial region increasing the local adhesion. MMA-MA segments are completely miscible with the SAN rich phase from the ABS. The aim of this work is to study the effects of ABS and compatibilizing agent on the melting and crystallization of nylon6/ABS blends. This effect has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Incorporation of this compatibilizer and ABS showed little effect on the melting behavior of the PA6 crystalline phase, in general. DMTA analysis confirmed the system immiscibility and showed evidence of compatibility between the two phases, nylon6 and ABS, produced by MMA-MA copolymer presence. The nylon6/ABS blend morphology, observed by transmission electron microscopy (TEM), changes significantly by the addition of the MMA-MA compatibilizer. A better dispersion of ABS in the nylon6 phase is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. AraÚjo, Ph.D. thesis, Universidade Federal de Săo Carlos, Săo Carlos, Brazil, 2001.

  2. M. I. Kohan, “Nylon Plastics Handbook” (Hanser Gardner Pub., New York, 1995).

    Google Scholar 

  3. C. Carrot, J. Guillet and J. F. May, Plast. Rubb. Comp. Proc. Appl. 16 (1991) 61.

    Google Scholar 

  4. V. J. Triacca, S. Ziaee, J. W. Barlow, H. Keskkula and D. R. Paul, Polymer 32 (1991) 1401.

    Google Scholar 

  5. S. P. Jang and D. Kim, Polym. Eng. Sci. 40 (2000) 1635.

    Google Scholar 

  6. A. Misra, G. Sawhney and R. A. Kumar, J. Appl. Polym. Sci. 50 (1993) 1179.

    Google Scholar 

  7. B. Majumdar, H. Keskkula and D. R. Paul, Polym. Prepr. 35 (1994) 850.

    Google Scholar 

  8. B. Majumdar, H. Keskkula and D. R. Paul, J. Polym. Sci.: Part B: Polymer Phys. 32 (1994) 2127.

    Google Scholar 

  9. B. Majumdar, H. Keskkula and D. R. Paul, Polymer 35 (1994) 5453.

    Google Scholar 

  10. B. Majumdar, H. Keskkula and D. R. Paul, Polymer 35 (1994) 5468.

    Google Scholar 

  11. D. M. Otterson, B. H. Kim and R. E. Lavengood, J. Mater. Sci. 26 (1991) 1478.

    Google Scholar 

  12. B. K. Kim, Y. M. Lee and H. M. Jeong, Polymer 34 (1993) 2075.

    Google Scholar 

  13. B. Majumdar, H. Keskkula and D. R. Paul, ibid. 35 (1994) 3164.

    Google Scholar 

  14. R. A. Kudva, H. Keskkula and D. R. Paul, ibid. 39 (1998) 2447.

    Google Scholar 

  15. D. M. Otterson, B. H. Kim and R. E. Lavengood, J. Mater. Sci. 26 (1991) 4855.

    Google Scholar 

  16. Y. Aoki and M. Watanabe, Polym. Eng. Sci. 32 (1992) 878.

    Google Scholar 

  17. M. Xanthos, “Reactive Extrusion: Principles and Practice” (Hanser Gardner Publ., New York, 1992).

    Google Scholar 

  18. F.-C. Chang and Y.-C. Hwu, Polym. Mater. Sci. Eng. 31 (1991) 155.

    Google Scholar 

  19. D. Ghidoni, C. Fasulo, D. Cecchele, M. Merlotti, G. Sterzi and R. Nocci, J. Mater. Sci. 28 (1993) 4119.

    Google Scholar 

  20. Y. Lee and K. Char, Macromolecules 27 (1994) 2603.

    Google Scholar 

  21. C.-J. Wu, J.-F. Kuo and C.-Y. Chen, Polym. Eng. Sci. 33 (1993) 1329.

    Google Scholar 

  22. J. M. Willis, B. D. Favis and C. LavallÉe, J. Mater. Sci. 28 (1993) 1749.

    Google Scholar 

  23. H.-S. Moon, B.-K. Ryoo and J.-K. Park, J. Polym. Sci.: Part B: Polymer Phys. 32 (1994) 1427.

    Google Scholar 

  24. T. Tang and B. Huang, J. Appl. Polym. Sci. 53 (1994) 355.

    Google Scholar 

  25. E. M. AraÚjo, E. Hage, Jr. and A. J. F. Carvalho, J. Mater. Sci. 38 (2003) 3515.

    Google Scholar 

  26. I. S. Bhardwaj, V. Kumar, A. B. Mathur and A. Das, J. Thermal Anal. 36 (1990) 2339.

    Google Scholar 

  27. J. Brandrup and E. H. Immergut, “Polymer Handbook” 2nd ed. (John Wiley & Sons, New York, 1989).

    Google Scholar 

  28. E. Hage, Jr., L. A. S. Ferreira, S. Manrich and L. A. Pessan, J. Appl. Polym. Sci. 71 (1999) 423.

    Google Scholar 

  29. P. Jannasch and B. Wesslen, ibid. 58 (1995) 753.

    Google Scholar 

  30. Y. P. Khanna, Macromolecules 25 (1992) 3298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, E.M., Hage, E. & Carvalho, A.J.F. Thermal properties of nylon6/ABS polymer blends: Compatibilizer effect. Journal of Materials Science 39, 1173–1178 (2004). https://doi.org/10.1023/B:JMSC.0000013872.86575.36

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000013872.86575.36

Keywords

Navigation