Skip to main content
Log in

Defect-free sintering of two material powder injection molded components Part II Model

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A defect-free, two-material component can be obtained via co-sintering by suitably altering the powder characteristics or compositions, as demonstrated in Part I. In this paper, a model to ascertain the suitability of material systems to be co-sintered without defects such as delamination or interface pores is presented. The model is based on the management of the stress induced due to the difference in shrinkage and an analysis of the in situ strength of the weaker material during sintering. Tool steel in combination with stainless steel admixed with boron and Fe-2Ni admixed with boron are two systems used to validate the model. The predictions of the model are in good agreement with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Brush Amer. Ceram. Soc. Bulletin 41 (1962) 799.

    Google Scholar 

  2. F. F. Lange and M. Metcalf J. Amer. Ceram. Soc. 66 (1983) 398.

    Google Scholar 

  3. P. Z. Cai D. J. Green and G. L. Messing, ibid. 80 (1997) 1929.

    Google Scholar 

  4. D. F. Heaney P. Suri and R. M. German, Part I, Submitted to the Same Journal.

  5. A. Zavaliangos and Y. Li, in “Advances in Powder Metallurgy and Particulate Materials,” edited by J. J. Oakes and J. H. Reinshagen (Metal Powder Industries Federation, Princeton, NJ, 1998) Vol. 2, p. 7.

    Google Scholar 

  6. P. Z. Cai D. J. Green and G. L. Messing J. Amer. Ceram. Soc. 80 (1997) 1940.

    Google Scholar 

  7. R. K. Bordia and A. Jagota, ibid. 76 (1993) 2475.

    Google Scholar 

  8. T. Cheng and R. Raj, ibid. 72 (1989) 1649.

    Google Scholar 

  9. K. Shinagawa, in Proceedings of the 4th International Symposium on Functionally Graded Materials, edited by I. Shiota and Y. Miyamoto, Tsukuba, Japan, 1996, p. 69.

  10. A. Maximenko O. van der Biest and E. Olevsky Inter. J. Fract. 110 (2001) L9.

    Google Scholar 

  11. H. Riedel and T. Kraft, Materials Science Forum, Vol. 308–311, 1999, in Proceedings of the 5th International Symposium on Functionally Graded Materials, edited by W. A. Kaysser, Dresden, Germany, 1998, p. 1035.

  12. A. Jagota and C. Y. Hui Mech. Mater. 11 (1991) 221.

    Google Scholar 

  13. J. Kanters U. Eisele and J. Rodel J. Amer. Ceram. Soc. 84 (2001) 2757.

    Google Scholar 

  14. R. M. German, in “Sintering Theory and Practice” (Wiley Interscience Publication, John Wiley and Sons, New York, NY, 1996) p. 76.

    Google Scholar 

  15. X. Xu P. Lu and R. M. German J. Mater. Sci. 37 (2002) 117.

    Google Scholar 

  16. R. Haynes Rev. Def. Behav. Mater. 3 (1981) 1.

    Google Scholar 

  17. H. Danniger G. Jangg B. Weiss and R. Stickler Powder Met. Intl. 25 (1993) 111.

    Google Scholar 

  18. E. Navara and B. Bengtsson Intl. J. Powder Met. Powder Tech. 20 (1984) 33.

    Google Scholar 

  19. M. Haghi and L. Anand Mech. Mater. 13 (1992) 37.

    Google Scholar 

  20. C. Geindreau D. Bouvard and P. Doremus Euro. J. Mech. Solids 18 (1999) 597.

    Google Scholar 

  21. M. B. Rubin O. Y. Vorobieu and L. A. Glen Intl. J. Solids Struct. 37 (2000) 1841.

    Google Scholar 

  22. B. Wang J. R. Klepaczko G. Lu and L. X. Kong J. Mater. Proc. Tech. 113 (2001) 574.

    Google Scholar 

  23. R. Raj and R. K. Bordia Acta Metall. 32 (1984) 1003.

    Google Scholar 

  24. M. Gasik and B. Zhang Comp. Mater. Sci. 18 (2000) 93.

    Google Scholar 

  25. U. Lindstedt B. Karlson and R. Masini Intl. J. Powder Met. 33 (1997) 49.

    Google Scholar 

  26. E. S. Palma J. Brazilian Soc. Mechan. Sci. 29 (1997) 72.

    Google Scholar 

  27. N. E. Dowling, in “Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue,” 2nd ed, (Prentice Hall, New Jersey, 1998) p. 565.

    Google Scholar 

  28. L. Bertini V. Fontanari and G. Straffelini Trans. Amer. Soc. Mechan. Eng. 120 (1998) 248.

    Google Scholar 

  29. G. A. Shoales and R. M. German Met. Mater. Trans. 29A (1998) 1257.

    Google Scholar 

  30. A. Pest F. Petzoldt H. Eifert G. Veltl and T. Hartwig, in “Advances in Powder Metallurgy and Particulate Materials,” edited by T. M. Cadle and K. S. Narasimhan (Metal Powder Industries Federation, Princeton, NJ, 1996) Vol. 5, p. 19.171.

    Google Scholar 

  31. P. Z. Cai G. L. Mesing and D. L. Green J. Amer. Ceram. Soc. 80 (1997) 445.

    Google Scholar 

  32. U. Lindstedt and B. Karlsson, Doktorsavhandlingar vid Chalmers Tekniska Hogskola (1998) Vol. 1375, p. 1.

    Google Scholar 

  33. S. Lou and D. O. Northwood J. Mater. Eng. Per. 33 (1994) 344.

    Google Scholar 

  34. N. S. Mishra S. Mishra and V. Ramaswamy Met. Trans. 20A (1989) 2819.

    Google Scholar 

  35. “Engineering Properties of Steel,” edited by P. D. Harvey (American Society of Metals, Metals Park, OH, 1982).

    Google Scholar 

  36. G. Lu G. Q. Lu and Z. M. Xiao J. Porous Mater. 6 (1999) 359.

    Google Scholar 

  37. W. D. Pilkey, in “Peterson's Stress Concentration Factors,” 2nd ed. (John Wiley & Sons, New York, NY, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suri, P., Heaney, D.F. & German, R.M. Defect-free sintering of two material powder injection molded components Part II Model . Journal of Materials Science 38, 4875–4881 (2003). https://doi.org/10.1023/B:JMSC.0000004408.44675.f6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000004408.44675.f6

Keywords

Navigation