Skip to main content
Log in

Thermodynamic Stability of the [M(Pyridine) 4 X 2 ]*2G Clathrates as a Function of the Host Components (M, X) and Included Guest (G)

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

This study compares thermodynamic stability of clathrate compounds belonging to three isomorphous series: [Mpy4(NCO)2]*2Py (M = M(II) = Mn, Fe, Co, Ni), [Mpy4(NO3)2]*2Py (M = Mn, Co, Ni, Cu, Zn), and [CuPy4(NO3)2]*2G (G = pyridine, benzene, THF, chloroform). Thermodynamic parameters (Δ Hav 0, Δ Sav 0 and Δ G298 0 of the dissociation of the clathrates were determined from the dependences of the guest equilibrium pressure over the clathrates versus temperature (tensimetric method). Clathrate phases, when differed only in the host formula, demonstrated the same order of thermodynamic stability as one expected for the host complexes in solution: Mn < Fe < Co < Ni < Cu > Zn for M and NCO > NO3 for X. The influence of the host complex formulation was comparable to the effect of guest template, the effect observed in the third series with the variation of the guest component. This study illustrates a dramatic impact of the stability of the host molecule on the overall stability of the clathrate phases, the impact being comparable to a contribution arising from the host–guest complementarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Vögtle (ed.): Comprehensive Supramolecular Chemistry; Molecular Recognition: Receptors for Molecular Guests, Vol. 2, Pergamon Press, Oxford (1996).

    Google Scholar 

  2. I. Goldberg: Top. Curr. Chem. 149, 1 (1988).

    Google Scholar 

  3. D.V. Soldatov and J.A. Ripmeester: Stud. Surf. Sci. Catal. 141, 353 (2002).

    Google Scholar 

  4. R.E. Newnham: Mater. Res. Soc. Bull. 22(5), 20 (1997).

    Google Scholar 

  5. C. Janiak: Angew. Chem. Int. Ed. Engl. 36, 1431 (1997).

    Google Scholar 

  6. Y. Aoyama: Top. Curr. Chem. 198, 131 (1998).

    Google Scholar 

  7. P.J. Langley and J. Hulliger: Chem. Soc. Rev. 28, 279 (1999).

    Google Scholar 

  8. A.V. Nossov, D.V. Soldatov, and J.A. Ripmeester: J. Am. Chem. Soc. 123, 3563 (2001).

    Google Scholar 

  9. G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, and J.D. Cashion: Science 298, 1762 (2002).

    Google Scholar 

  10. Yu.A. Dyadin and N.V. Kislykh: Mendeleev Commun., 134 (1991).

  11. Yu.A. Dyadin, D.V. Soldatov, V.A. Logvinenko, and J. Lipkowski: J. Coord. Chem. 37, 63 (1996).

    Google Scholar 

  12. D.V. Soldatov, Yu.A. Dyadin, J. Lipkowski, and K. Suwinska: Mendeleev Commun., 100 (1997).

  13. D.V. Soldatov, V.A. Logvinenko, Yu.A. Dyadin, J. Lipkowski, and K. Suwinska: J. Struct. Chem. 40, 757 (1999).

    Google Scholar 

  14. D.V. Soldatov and J. Lipkowski: J. Struct. Chem. 39, 238 (1998).

    Google Scholar 

  15. D.V. Soldatov, E.A. Ukraintseva, V.A. Logvinenko, Yu.A. Dyadin, E.V. Grachev, and A.Yu. Manakov: Supramol. Chem. 12, 237 (2000).

    Google Scholar 

  16. E.A. Ukraintseva, D.V. Soldatov, V.A. Logvinenko, and Yu.A. Dyadin: Mendeleev Commun., 102 (1997).

  17. D.V. Soldatov and J. Lipkowski: J. Struct. Chem. 36, 979 (1995).

    Google Scholar 

  18. D.V. Soldatov, J. Lipkowski, and E.V. Grachev: J. Struct. Chem. 36, 830 (1995).

    Google Scholar 

  19. D.V. Soldatov, Yu.A. Dyadin, J. Lipkowski, and A.G. Ogienko: Mendeleev Commun., 11 (1997).

  20. M. Maekawa, M. Munakata, S. Kitagawa, and M. Nakamura: Anal. Sci. 7, 827 (1991).

    Google Scholar 

  21. D.V. Soldatov, G.D. Enright, J.A. Ripmeester, J. Lipkowski, and E.A. Ukraintseva: J. Supramol. Chem. 1, 245 (2001).

    Google Scholar 

  22. D.V. Soldatov, V.A. Logvinenko, and Yu.A. Dyadin: Russ. J. Inorg. Chem. 40, 309 (1995).

    Google Scholar 

  23. P. Losier and M.J. Zaworotko: J. Chem. Crystallogr. 26, 277 (1996).

    Google Scholar 

  24. D.V. Soldatov, K. Suwinska, J. Lipkowski, and A.G. Ogienko: J. Struct. Chem. 40, 781 (1999).

    Google Scholar 

  25. V.A. Logvinenko and D.V. Soldatov: J. Thermal Anal. 56, 485 (1999).

    Google Scholar 

  26. A.F. Cameron, D.W. Taylor, and R.H. Nuttall: J. Chem. Soc., Dalton Trans., 1603 (1972).

  27. A.F. Cameron, D.W. Taylor, and R.H. Nuttall: J. Chem. Soc., Dalton Trans., 1608 (1972).

  28. C.G. Jackson: J. Chem. Soc. 99, 1066 (1911).

    Google Scholar 

  29. A.V. Suvorov: Termodinamicheskaya khimiya paroobraznogo sostoyaniya. Tenzimetricheskiye issledovaniya geterogennykh ravnovesij, Khimiya, Leningrad (1970), pp. 46-51 (in Russian).

    Google Scholar 

  30. V.B. Lazarev, J.H. Greenberg, and B.A. Popovkin: Curr. Top. Mater. Sci. 1, 657 (1978).

    Google Scholar 

  31. E.A. Ukraintseva, Yu.A. Dyadin, N.V. Kislykh, V.A. Logvinenko, and D.V. Soldatov: J. Inclusion Phenom. 23, 23 (1995).

    Google Scholar 

  32. D.V. Soldatov, B.A. Kolesov, J. Lipkowski, and Yu.A. Dyadin: J. Struct. Chem. 38, 819 (1997).

    Google Scholar 

  33. H. Irving and R.J.P.Williams: J. Chem. Soc., 3192 (1953).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ukraintseva, E., Soldatov, D. & Dyadin ✠:, Y. Thermodynamic Stability of the [M(Pyridine) 4 X 2 ]*2G Clathrates as a Function of the Host Components (M, X) and Included Guest (G). Journal of Inclusion Phenomena 48, 19–23 (2004). https://doi.org/10.1023/B:JIPH.0000016596.99715.79

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JIPH.0000016596.99715.79

Navigation