Skip to main content
Log in

The Effect of the Oxygen Exchange at Electrodes on the High-Voltage Electrocoloration of Fe-Doped SrTiO3 Single Crystals: A Combined SIMS and Microelectrode Impedance Study

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The effect of the electrode material on the high voltage stoichiometry-polarization (“electrocoloration”) of Fe-doped SrTiO3 single crystals has been studied. For different electrode materials (150-nm Ag/15-nm Cr and 150-nm Au/15-nm Cr) secondary ion mass spectrometry (SIMS) was used to measure the depth profile of the 18O-isotope after high-field stress. The results were compared with spatially resolved impedance measurements on electrocolored Fe-doped SrTiO3 single crystals. For Au/Cr as well as Ag/Cr electrodes a large dc voltage leads to moving color fronts which are usually correlated with a pronounced stoichiometry polarization of the samples due to electrodes blocking the ionic current. However, the local impedance measurements demonstrate that the conductivity profiles near the cathode depend on the electrode material. This finding is in accordance with the SIMS measurements which indicate that the Ag/Cr-electrodes are, in contrast to Au/Cr-electrodes not completely inactive for the oxygen incorporation into the Fe-doped SrTiO3. The results are discussed in terms of defect chemical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Baiatu, R. Waser, and K.-H. Härdtl, J. Am. Ceram. Soc., 73, 1663 (1990).

    Google Scholar 

  2. S. Rodewald, J. Fleig, and J. Maier, J. Eur. Ceram. Soc., 19, 797 (1999).

    Google Scholar 

  3. J. Blanc and D.L. Staebler, Phys. Rev. B 4, 3548 (1971).

    Google Scholar 

  4. J. Rödel and G. Tomandl, J. Mat. Sci., 19, 3515 (1984).

    Google Scholar 

  5. W.A. Schulze, L.E. Cross, and W.R. Buessem, J. Am. Ceram. Soc., 63, 83 (1980).

    Google Scholar 

  6. M.H. Hebb, J. Chem. Phys., 20, 185 (1952).

    Google Scholar 

  7. I. Yokota, J. Phys. Soc. Japan, 16, 2213 (1961).

    Google Scholar 

  8. R. Waser, T. Baiatu, and K.-H. Härdtl, J. Am. Ceram. Soc., 73, 1654 (1990).

    Google Scholar 

  9. R. Baker, J. Guindet, and M. Kleitz, J. Electrochem. Soc., 144, 2427 (1997).

    Google Scholar 

  10. J. Van Herle and A.J. McEvoy, J. Phys. Chem. Solids, 55, 339 (1994).

    Google Scholar 

  11. M.Gödickemeier, K. Sasaki, L.J. Gauckler, and I. Riess, J. Electrochem. Soc., 144, 1635 (1997).

    Google Scholar 

  12. D.Y. Wang and A.S. Nowick, J. Electrochem. Soc. 128, 55 (1981).

    Google Scholar 

  13. B.A. van Hassel, B.A. Boukamp, and A.J. Burggraaf, Solid State Ionics, 48, 139 (1991).

    Google Scholar 

  14. T.A. Ramanarayanan and R.A. Rapp, Metall. Trans., 3, 3239 (1972).

    Google Scholar 

  15. S.P.S. Badwal, M. Bannister, and M. Murray, J. Electroanal. Chem., 168, 363 (1984).

    Google Scholar 

  16. H. Rieckert and R. Steiner, Z. Phys. Chem. NF, 49, 127 (1966).

    Google Scholar 

  17. F.K. Moghadam and D.A. Stevenson, J. Electrochem. Soc., 133, 1329 (1986).

    Google Scholar 

  18. R. Jiminez, T. Kloidt, and M. Kleitz, J. Electrochem. Soc., 144, 582 (1997).

    Google Scholar 

  19. S. Rodewald, J. Fleig, and J. Maier, J. Am. Ceram. Soc., 83, 1969 (2000).

    Google Scholar 

  20. J. Daniels, K.-H. Härdtl, and R. Wernicke, Phil. Tech. Rev., 38, 73 (1978).

    Google Scholar 

  21. H. Okinaka and T. Hata, Am. Ceram. Soc. Bull., 74, 62 (1995).

    Google Scholar 

  22. N. Yamaoka, Ceram. Bull., 65, 1149 (1996).

    Google Scholar 

  23. I. Denk, W. Münch, and J. Maier, J. Am. Ceram. Soc., 78, 3265 (1995).

    Google Scholar 

  24. R. Moos and K.-H. Härdtl, J. Am. Ceram. Soc., 80, 2549 (1997).

    Google Scholar 

  25. T. Kawada, K. Masuda, J. Suzuki, A. Kaimai, Y. Nigara, J. Mizusaki, H. Yugami, H. Arashi, N. Sakai, and H. Yokokawa, Solid State Ionics, 121, 271 (1999).

    Google Scholar 

  26. J. Newman, J. Electrochem. Soc., 113, 501 (1966).

    Google Scholar 

  27. T. Baiatu, “A model to describe the degradation of SrTiO3 polyand single-crystals under dc voltage stress,” Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodewald, S., Sakai, N., Yamaji, K. et al. The Effect of the Oxygen Exchange at Electrodes on the High-Voltage Electrocoloration of Fe-Doped SrTiO3 Single Crystals: A Combined SIMS and Microelectrode Impedance Study. Journal of Electroceramics 7, 95–105 (2001). https://doi.org/10.1023/B:JECR.0000027949.32661.9d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000027949.32661.9d

Navigation