Skip to main content
Log in

Surface Segregation Mechanisms in Ferroelectric Thin Films

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Reliability issues have hampered the adoption of ferroelectric thin films by the microelectronics industry. One of these is imprint, an important problem affecting the performance of ferroelectric non-volatile memories. This paper presents the effects of the low temperature pyrolysis step on the chemical and physical properties of SrBi2Ta2O9 films. A comparison of the hysteretic properties and composition profiles shows that control of the oxidising conditions during pyrolysis is critical to the dielectric properties. Data from this work and from the literature have been used to construct a model that explains the origin of surface depletion and segregation, self poling and as-grown imprint in ferroelectric films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott, C.A. Paz de Araujo, L. D. Macmillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, T. Ueda, D. Ueda, and G. Kano, Ferroelectrics, 133, 47 (1992).

    Google Scholar 

  2. D.R. Uhlmann, J.T. Dawley, W.H. Poisi, and B.J.J. Zelinski, Journal of Sol-Gel Science and Technology, 19, 53 (2000).

    Google Scholar 

  3. A.I. Kingon and S.K. Streiffer, Curr. Opin. Solid State Mater. Sci., 4, 39 (1999).

    Google Scholar 

  4. H. Takasu, Journal of Electroceramics, 4, 327 (2000).

    Google Scholar 

  5. T. Sumi, Y. Judai, K. Hirano, T. Ito, T. Mikawa, M. Takeo, M. Azuma, S. Hayashi, Y. Uemoto, K. Arita, T. Nasu, Y. Nagano, A. Inoue, A. Matsuda, E. Fuji, Y. Shimada, and T. Otsuki, Jpn. J. Appl. Phys., 35 (part 1, 2B), 1516 (1996).

    Google Scholar 

  6. W.L. Warren, B.A. Tuttle, D. Dimos, G.E. Pike, H.N. Al-Shareef, R. Ramesh, and J.T. Evans, Jpn. J. Appl. Phys., 35, 1521 (1996).

    Google Scholar 

  7. M. Grossman, O. Lohse, D. Bolten, U. Boettge, R. Waser, W. Hartner, M. Kastner, and G. Schindler, Appl. Phys. Lett., 76, 363 (2000).

    Google Scholar 

  8. S. Okamura, S. Miyata, Y. Mizutani, T. Nishida, and T. Shiosaki, Jpn. J. Appl. Phys., 38 (part 1, no. 9B), 5364 (1999).

    Google Scholar 

  9. S.S. Dana, K.F. Etzold, and J. Clabes, J. Appl. Phys., 243, 4398 (1991).

    Google Scholar 

  10. E. Vasco, O. Böhme, E. Romàn, and C. Zaldo, Appl. Phys Lett., 78, 2037 (2001).

    Google Scholar 

  11. A.D. Polli and F.F. Lange, J. Am. Ceram. Soc, 78, 3401 (1995).

    Google Scholar 

  12. B.E. Watts, F. Leccabue, M. Fanciulli, S. Ferrari, G. Tallarida, D. Parisoli, and C. Morandi, Integrated Ferroelectrics, 37, 565 (2001).

    Google Scholar 

  13. B.E. Watts, F. Leccabue, S. Guerri, M. Severi, M. Fanciulli, S. Ferrari, G. Tallarida, and C. Morandi, Thin Solid Films, 406, 23 (2002).

    Google Scholar 

  14. P. Falchetti, Thesis, Engineering Department, Universiy of Parma, Italy (2002).

    Google Scholar 

  15. Y. Fujisaki, K. Iseki, and H. Ishiwara, Jpn. J. Appl. Phys., 42 (part 2, no. 3B), 267 (2003).

    Google Scholar 

  16. Z.-J. Wang, R. Maeda, and K. Kikuchi, Jpn. J. Appl. Phys., 38, 5342 (1999).

    Google Scholar 

  17. M. Kosec, B. Malic, and M. Mandeljc, Mater. Sci. Semicond Process, 2/3, 97 (2002).

    Google Scholar 

  18. R. Sirera, D. Leinen, E. Rodríguez-Castellón, and M.L. Calzada, Chem. Mater., 11, 3437 (1999).

    Google Scholar 

  19. Y.-B. Park, S.-M. Jang, J.-K. Lee, and J.-W. Park, J. Vac. Sci. Technol. A, 18, 17 (2000).

    Google Scholar 

  20. N.-J. Seong and E.-S. Choi, J. Vac. Sci. Technol. A, 17, 83 (1999).

    Google Scholar 

  21. C.H. Lu and B.K. Fang, J. Mat. Res., 12, 2104 (1997).

    Google Scholar 

  22. S. Ono, A. Sakakibara, T. Osaka, I. Koiwa, J. Mita, and K. Asami, J. Electrochem. Soc, 146, 685 (1999).

    Google Scholar 

  23. K.M. Lee, H.G. An, J.K. Lee, Y.T. Lee, S.W. Lee, S.H. Joo, S.D. Nam, K.S. Park, M.S. Lee, M.S. Park, H.K. Kang, and J. T. Moon, Jpn. J. Appl. Phys., 40, 4979 (2001).

    Google Scholar 

  24. S.A. Impey, Z. Huang, A. Patel, R. Beanland, N.M. Shorrocks, R. Watton, and R.W. Whatmore, J. Appl. Phys, 83, 2202 (1998).

    Google Scholar 

  25. G.-S. Park and I.-S. Chung, Jpn. J. Appl. Phys., 41, (part 1 no. 3A), 1519 (2002).

    Google Scholar 

  26. Y.-C. Lai, Y.S. Gong, and C. Lee, Mater. Chem. Phys., 51, 147 (1997).

    Google Scholar 

  27. A.K. Bhattacharya, S.F. Forster, D.R. Pyke, K.K. Mallick, and R. Reynolds, J. Mater. Chem., 7, 837 (1997).

    Google Scholar 

  28. G. Gusmano, A. Bianco, M. Viticoli, S. Kaciulis, G. Mattogno, and L. Pandolfi, Surf. Interface Anal., 34, 690 (2002).

    Google Scholar 

  29. S.K. Roy, S.K. Mitra, and S.K. Bose, Oxidation of Metals, 49(3/4), 261 (1998).

    Google Scholar 

  30. R. Haugsrud and P. Kofstad, Oxidation of Metals, 50(3/4), 189 (1998).

    Google Scholar 

  31. M. Martin and E. Fromm, J. Alloy Comp., 258, 7 (1997).

    Google Scholar 

  32. C. Wagner, Z. Phys. Chem., B, 21, 25 (1933).

    Google Scholar 

  33. N. Cabrera and N.F. Mott, Rep. Prog. Phys., 12, 163 (1948).

    Google Scholar 

  34. R.J. McEachern and P. Taylor, J. Nucl. Mater., 254, 87 (1998).

    Google Scholar 

  35. K.S. Sumi, H. Qiu, M. Shimada, S. Sakai, and T. Nishiwaki, Jpn. J. Appl. Phys., 38, 886 (1999).

    Google Scholar 

  36. T. Yamamoto, J. Sakamoto, E. Matuzaki, and R. Takayama, Jpn. J. Appl. Phys., 38 (part 1, no. 9B), 5332 (1999).

    Google Scholar 

  37. A.R. Zomorrodian, N.J. Wub, H. Linb, and A. Ignatiev, Thin Solid Films, 335, 225 (1998).

    Google Scholar 

  38. W. Liu, J. Ko, and W. Zhu, Mater. Lett., 49, 122 (2001).

    Google Scholar 

  39. M. Shimizu, H. Fujisawa, and T. Shiosaki, Microelectronic Engineering, 29, 173 (1995).

    Google Scholar 

  40. N. Inoue, T. Takeuchi, and Y. Hayashi, IEEE Trans Electron Dev, 49(9), 1572 (2002).

    Google Scholar 

  41. G. Poullain, R. Bouregba, B. Vilquin, G. Le Rhun, and H. Murray, Appl. Phys Lett., 81, 5015 (2002).

    Google Scholar 

  42. K. Okuwada and M. Saito, Electron Comm Jpn, 8, 40 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.E. Watts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, B., Leccabue, F., Tallarida, G. et al. Surface Segregation Mechanisms in Ferroelectric Thin Films. Journal of Electroceramics 11, 139–147 (2003). https://doi.org/10.1023/B:JECR.0000026367.61510.de

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000026367.61510.de

Navigation