Skip to main content
Log in

First Principles Calculations of Auger Recombination and Impact Ionization Rates in Semiconductors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A first-principles approach within the screened-exchange approximation to the density functional theory is proposed to simulate the impact ionization process in semiconductors. Results for InP are reported and discussed in comparison with those obtained for the most studied GaAs. The formalism is extended to the calculation of Auger recombination rates: the results for GaAs are found to be in good agreement with previous experimental and theoretical works. Moreover, Auger lifetimes calculated directly via Fermi's Golden Rule are shown to be in excellent agreement with lifetime values determined via detailed balance principles proceeding from calculated impact ionization rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.T. Landsberg, Recombination in Semiconductors (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  2. B.M. Bylander and L. Kleinman, Phys. Rev. B, 41, 7868 (1990).

    Google Scholar 

  3. A. Seidl, A. Gorling, P. Vogl, J.A. Majewski, and M. Levy, Phys. Rev. B, 53, 3764 (1996).

    Google Scholar 

  4. W. Kohn and L.J. Sham, Phys. Rev., 140, A1113 (1965); P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964).

    Google Scholar 

  5. J. Bude and K. Hess, J. Appl. Phys., 72, 3554 (1992).

    Google Scholar 

  6. H.K. Jung, K. Taniguchi, and C. Hamaguchi, J. Appl. Phys., 79(5), 2473 (1996).

    Google Scholar 

  7. Y. Wang and K. Brennan, J. Appl. Phys., 71, 2736 (1992).

    Google Scholar 

  8. N. Sano and A. Yoshii, Phys. Rev. B, 45, 4171 (1992).

    Google Scholar 

  9. M. Stobbe, R. Redmer, and W. Schattke, Phys. Rev. B, 49, 4494 (1994).

    Google Scholar 

  10. D. Harrison, R.A. Abram, and S. Brand, J. Appl. Phys. 85, 8186 (1999).

    Google Scholar 

  11. S. Picozzi, R. Asahi, C.B. Geller, A. Continenza, and A.J. Freeman, Phys. Rev. B, 65, 113206 (2002).

    Google Scholar 

  12. S. Picozzi, R. Asahi, C.B. Geller, and A.J. Freeman, Phys. Rev. Lett., 89, 197601 (2002).

    Google Scholar 

  13. G. Cappellini, R. Del Sole, L. Reining, and F. Bechstedt, Phys. Rev. B, 47, 9892 (1993).

    Google Scholar 

  14. K.F. Brennan, The Physics of Semiconductors (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  15. R. Asahi, W. Mannstadt, and A.J. Freeman, Phys. Rev. B, 59, 7486 (1999).

    Google Scholar 

  16. E. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman, Phys. Rev. B, 24, 864 (1981).

    Google Scholar 

  17. H.J. Monkhorst and J.D. Pack, Phys. Rev. B, 13, 5188 (1976).

    Google Scholar 

  18. S. Massidda, M. Posternak, and A. Baldereschi, Phys. Rev. B 48, 5058 (1993).

    Google Scholar 

  19. S. Krishnamurthy, A. Sher, and A.B. Chen, J. Appl. Phys. 82(11), 5540 (1997).

    Google Scholar 

  20. To our knowledge, the only theoretical investigation on InP is reported in S.P Wilson, S. Brand, A.R. Beattie, and R.A. Abram, Semicond. Sci. Technol., 8(8), 1546 (1993).

    Google Scholar 

  21. Our results are obtained in non-degenerate conditions; in GaAs, for doping densities n 0 > 1017 cm-3, a shift of the present band structure (obtained for bulk GaAs without any impurities) would probably work well.

  22. D.B. Laks, G.F. Neumark, A. Hangleiter, and S.T. Pantelides, Phys. Rev. Lett., 61, 1229 (1988); D.B. Laks, G.F. Neumark, and S.T. Pantelides, Phys. Rev. B, 42, 5176 (1990).

    Google Scholar 

  23. W.K. Metzger, M.W. Wanlass, R.J. Ellingson, R.K. Ahrenkiel, and J.J. Carapella, Appl. Phys. Lett., 79, 3272 (2001).

    Google Scholar 

  24. E. Marin, I. Riech, P. Diaz, J.J. Alvarado, R. Baquero, H. Vargas, A. Cruz-Orea, and M. Vargas, J. Appl. Phys., 83, 2604 (1998).

    Google Scholar 

  25. U. Strauss, W.W. R¨uhle, and K. Koehler, Appl. Phys. Lett., 62, 55 (1993).

    Google Scholar 

  26. G.B. Lush, H.F. MacMillan, B.M. Keyes, D.H. Levi, M.R. Melloch, R.K. Ahrenkiel, and M.S. Lundstrom, J. Appl. Phys., 72, 1436 (1992).

    Google Scholar 

  27. A. Haug, J. Phys. C, 16, 4159 (1980).

    Google Scholar 

  28. M. Takeshima, Jpn. J. Appl. Phys., 22, 491 (1983).

    Google Scholar 

  29. W. Van Roosbroeck and W. Shockley, Phys. Rev., 94, 1558 (1954).

    Google Scholar 

  30. M.V. Fischetti, N. Sano, S.E. Laux, and K. Natori, IEEE-Trans. on Technological Computer Aided Design. Availabe at: http://www.ieee.org/products/online/journal/tcad/accepted/ fischetti-feb97.

  31. R. Redmer, J.R. Madureira, N. Fitzer, S.M. Goodnick, W. Schattke, and E. Scholl, J. Appl. Phys., 87, 781 (2000).

    Google Scholar 

  32. M. Takeshima, Phys. Rev. B, 23, 6625 (1981).

    Google Scholar 

  33. D. Dutta and J. Nelson, J. Appl. Phys., 85, 74 (1982).

    Google Scholar 

  34. M. Takeshima, Phys. Rev. B 28, 2039 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picozzi, S., Asahi, R. & Freeman, A. First Principles Calculations of Auger Recombination and Impact Ionization Rates in Semiconductors. Journal of Computational Electronics 2, 197–202 (2003). https://doi.org/10.1023/B:JCEL.0000011424.07265.d5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCEL.0000011424.07265.d5

Navigation