Skip to main content
Log in

Effect of Heat-Treatment on the Mechanism and Kinetics of the Hydrogen Evolution Reaction on Ni—P + TiO2 + Ti Electrodes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Composite Ni—P + TiO2 + Ti layers were prepared by codeposition of Ni—P alloy with TiO2 and Ti powders from a solution containing suspension of TiO2 and Ti particles. The electrodeposition was carried out under galvanostatic conditions at room temperature. The layers exhibited an amorphous Ni—P matrix in which crystalline TiO2 and Ti were embedded. On the deposit surface, the nonstoichiometric Ti oxide, Ti10O19, and intermetallic compounds, NiTi, formed during the electrodeposition, were also present. The heat treatment of these layers in argon leads to the crystallization of Ni—P matrix and formation of nonstoichiometric Ti oxides, detected by XRD. Electrolytic activity towards the hydrogen evolution reaction (HER) was studied on these electrode materials before and after heat treatment. The mechanism of the HER was also studied, and the kinetic parameters were determined using steady-state polarization and electrochemical impedance spectroscopy (EIS). An increase in activity occurring after heating of Ni—P + TiO2 + Ti layers is related to TiO2 reduction and formation of nonstoichiometric Ti oxides: Ti10O19(400 °C), Ti7O13(500 °C) and Ti4O7(800 °C). It is postulated that the increase in electrochemical activity is related to the properties of these oxides and a facility for H reduction/adsorption on their surface, as well as to the presence of NiTi intermetallics as compared with the Ni—P + TiO2 + Ti electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lasia, in B.E. Conway and R.E. White (Eds), 'Modern Aspects of Electrochemistry', Vol. 35 (Kluwer Academic/Plenum Publishers, New York, 2002), p. 1.

    Google Scholar 

  2. A. Lasia, in B.E. Conway, J. Bockris and R.E. White (Eds), 'Modern Aspects of Electrochemistry', Vol. 32 (Kluwer Academic/Plenum Publishers, New York, 1999), p. 143.

    Google Scholar 

  3. J. Panek, A. Serek, A. Budniok, E. Rówi?ski and E. ??giewka, Int. J. Hydrogen Energy 28 (2003) 169.

    CAS  Google Scholar 

  4. B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka and A. Lasia, Int. J. Hydrogen Energy 29 (2004) 145.

    Google Scholar 

  5. A. Lasia, in W. Vielstich, A. Lamm and H.A. Gasteiger (Eds), 'Handbook of Fuel Cells. Fundamentals, Technology and Applications', Vol. 2, Part 4 (John Wiley & Sons, Chichester, UK, 2003), pp. 416–440.

    Google Scholar 

  6. R. Rausch and H. Wendt, J. Electrochem. Soc. 9 (1996) 143.

    Google Scholar 

  7. A. Gruszka and A. Budniok, Adv. Perform. Mater. 6 (1999) 141.

    Article  CAS  Google Scholar 

  8. D. Gierlotka, E. Rówi?ski, A. Budniok and E. ??giewka, J. Appl. Electrochem. 27(1997) 1.

    Article  Google Scholar 

  9. B. ?osiewicz, A. St?pie?, D. Gierlotka and A. Budniok, Thin Sol. Films 349(1999) 43.

    Google Scholar 

  10. I. Nap?oszek-Bilnik and A. Budniok, Composites 2(2002) 63.

    Google Scholar 

  11. R. Karimi Shervedani and A. Lasia, J. Electrochem. Soc. 144 (1997) 511.

    Google Scholar 

  12. R. Karimi Shervedani and A. Lasia, J. Electrochem. Soc. 144 (1997) 8.

    Google Scholar 

  13. R. Karimi Shervedani and A. Lasia, J. Appl. Electrochem. 29 (1999) 979.

    Google Scholar 

  14. R. Karimi Shervedani and A. Lasia, J. Electrochem. Soc. 145 (1998) 2219.

    Google Scholar 

  15. L. Chen and A. Lasia, J. Electrochem. Soc. 140(1993) 2464.

    CAS  Google Scholar 

  16. C. Hitz and A. Lasia, J. Electroanal. Chem. 500(2001) 213; C. Hitz and A. Lasia, J. Electroanal. Chem. 532 (2002) 133.

    Article  CAS  Google Scholar 

  17. P.A. Gay, P. Berçot and J. Pagetti, Surf. Coat. Technol. 140 (2001) 147.

    Article  CAS  Google Scholar 

  18. S. Takeda, S. Suzuki, H. Odaka and H. Hosono, Thin Sol. Films 392 (2001) 338.

    CAS  Google Scholar 

  19. S. Survilienë, L. Orlovskaja, G. Bikulcius and S. Biallozor, Surf. Coat. Technol. 137 (2001) 230.

    Article  Google Scholar 

  20. S. Rodrigues, N. Munichandraiah and A.K. Shukla, Bull. Mater. Sci. 23 (2000) 383.

    CAS  Google Scholar 

  21. E.B. Castro, M.J. de Giz, E.R. Gonzalez and J.R. Vilche, Electrochim. Acta 42 (1997) 951.

    Article  CAS  Google Scholar 

  22. A. Takasaki, Y. Furuya, K. Ojima and Y. Taneda, J. Alloy Compd. 224(1995) 269.

    CAS  Google Scholar 

  23. T. Mizuno and M. Enyo, Denki Kagaku 63 (1995) 719.

    CAS  Google Scholar 

  24. J.R. Macdonald, J. Schoonman and A.P. Lehner, J. Electroanal. Chem. 131 (1982) 77.

    Article  CAS  Google Scholar 

  25. P.W. Palmberg, G.E. Riach, R.E. Weber and N.C. MacDonald, 'Handbook of Auger Electron Spectroscopy' (Physical Electronics Industries, Edina, Minessota, 1976).

    Google Scholar 

  26. E. Rówi?ski and E. ??giewka, Arch. Mater. Sci. 20 (1999) 241.

    Google Scholar 

  27. E. Rówi?ski, Surf. Sci. 411 (1998) 316.

    Google Scholar 

  28. J.O'M. Bockris, J. McBree and L. Nanis, J. Electrochem. Soc. 112 (1965) 1025.

    CAS  Google Scholar 

  29. D.A. Harrington and B.E. Conway, J. Electroanal. Chem. 221 (1987) 1.

    Article  CAS  Google Scholar 

  30. D.A. Harrington and B.E. Conway, Electrochim. Acta 32 (1987) 1703.

    Article  CAS  Google Scholar 

  31. A. Lasia and A. Rami, J. Electroanal. Chem. 294 (1990) 123.

    Article  CAS  Google Scholar 

  32. P. Los, A. Lasia and H. Ménard, J. Electroanal. Chem. 360 (1993) 101.

    Article  CAS  Google Scholar 

  33. A. Lasia, Curr. Topics Electrochem. 2 (1993) 239.

    Google Scholar 

  34. G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehabach and J.H. Sluyters, J. Electroanal. Chem. 176 (1984) 275.

    CAS  Google Scholar 

  35. R. de Levie, in P. Delahay (Ed), 'Adv. Electrochem. Electrochem. Eng.' Vol. 6 (Interscience, New York, 1967), p. 326.

    Google Scholar 

  36. H. Dumont, P. Los, L. Brossard, A. Lasia and H. Ménard, J. Electrochem. Soc. 139 (1992) 2143.

    CAS  Google Scholar 

  37. T. Pajkossy, J. Electroanal. Chem. 364 (1994) 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Budniok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łosiewicz, B., Budniok, A., Rówiński, E. et al. Effect of Heat-Treatment on the Mechanism and Kinetics of the Hydrogen Evolution Reaction on Ni—P + TiO2 + Ti Electrodes. Journal of Applied Electrochemistry 34, 507–516 (2004). https://doi.org/10.1023/B:JACH.0000021895.52321.35

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000021895.52321.35

Navigation