Skip to main content
Log in

Effects of Thiourea on Anodic Dissolution of Au and Surface Oxidation Behaviour in aq HClO4 Studied by Means of an EQCN

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic dissolution of Au is facilitated by the presence of thiourea owing to formation of strongly complexed Au ions. The present paper reports studies of this process using cyclic voltammetry (CV), chronopotentiometry and chronoamperometry, usefully complemented by nanogravimetry employing an electrochemical quartz-crystal nanobalance (EQCN). The molar masses per faraday for Au dissolution were determined from EQCN measurements, coupled with information derived from CV, chronopotentiometry and chronoamperometry, and clearly indicate that Au becomes dissolved over the potential range 0.45—0.65 V vs RHE via a 1e oxidation process in 0.5 M HClO4 solution containing thiourea. The peak potential for Au dissolution in the presence of thiourea is about 600 mV less positive than that in the presence of Br or Cl (1.20 V vs RHE for Br and 1.39 V vs RHE for Cl). The linear relationship between anodic peak currents at about 0.630 V vs RHE and square-root of the sweep rate indicates that the Au dissolution process is diffusion-controlled. The anodic current efficiency for Au dissolution is 93%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ke, J.J. Hoekstra, B.C. Sison and D. Trivich, J. Electrochem. Soc. 106 (1959) 382.

    CAS  Google Scholar 

  2. Ph. Javet and H.E. Hintermann, Electrochim. Acta 14 (1969) 527.

    Article  CAS  Google Scholar 

  3. E. Dutkiewicz and R. Parsons, J. Electroanal. Chem. 11 (1965) 197.

    Google Scholar 

  4. F.A. Blomgren and J. O'M Bockris, Nature, London 186 (1960) 305.

    CAS  Google Scholar 

  5. H. Wroblowa and M. Green, Electrochim. Acta 8 (1963) 679.

    Article  CAS  Google Scholar 

  6. M. Alodan and W. Smyrl, Electrochim. Acta 44 (1998) 299.

    Article  CAS  Google Scholar 

  7. B. Reents, W. Plieth, V.A. Macagno and G.I. Lacconi, J. Electroanal. Chem. 453 (1998) 121.

    Article  CAS  Google Scholar 

  8. G. Brown, G. Hope, D. Schweinsberg and P. Fredericks, J. Electroanal. Chem. 380 (1995) 161.

    Article  CAS  Google Scholar 

  9. M. Fleischmann, I. Hill and G. Sundholm, J. Electroanal. Chem. 157 (1983) 359.

    Article  CAS  Google Scholar 

  10. M. Tian, W.G. Pell and B.E. Conway, J. Electroanal. Chem. 552 (2003) 279.

    Article  CAS  Google Scholar 

  11. S.H. Cadle and S. Bruckenstein, J. Electroanal. Chem. 48 (1973) 325.

    Article  CAS  Google Scholar 

  12. S.G.D. Shackleford, C. Boxall, S.N. Port and R.J. Taylor, J. Electroanal. Chem. 538 (2002) 109.

    Article  Google Scholar 

  13. R.P. Frankenthal and D.E. Thompson, J. Electrochem. Soc. 129 (1982) 1192.

    CAS  Google Scholar 

  14. S. Ye, C. Ishibashi, K. Shimazu and K. Uosaki, J. Electrochem. Soc. 145 (1998) 1614.

    CAS  Google Scholar 

  15. Lobry de Bruyn, Recl. Trav. Chim. Pays Bas 40 (1921) 53.

    Google Scholar 

  16. T. Groenewald, J. Appl. Electrochem. 5 (1975) 71.

    Article  CAS  Google Scholar 

  17. H.G. Zhang, I.M. Ritchie and S.R.L. Brooy, J. Electrochem. Soc. 148 (2001) 146.

    Google Scholar 

  18. M. Okido, M. Ishikawa and L.Y. Chai, Trans. Nonferrous Met. Soc. China 12 (2002) 519.

    CAS  Google Scholar 

  19. V.P. Kazakov, A.I. Lapsjin, and B.I. Pescheviski, Russ. J. Inorg. Chem. 9 (1964) 708.

    Google Scholar 

  20. P.W. Preisler and L. Berger, J. Am. Chem. Soc. 69 (1947) 322.

    CAS  Google Scholar 

  21. S.J. Reddy and V.R. Krishnan, J. Electroanal. Chem. 27 (1970) 473.

    Google Scholar 

  22. S. Bruckenstein, A. Fensore, Z. Li and A.R. Hillman, J. Electroanal. Chem. 370 (1994) 189.

    Article  CAS  Google Scholar 

  23. Y. Mo, Y. Gofer, E. Hwang, Z. Wang and D.A. Scherson, J. Electroanal. Chem. 409 (1996) 87.

    Article  CAS  Google Scholar 

  24. A. Zolfaghari, B.E. Conway and G. Jerkiewicz, Electrochim. Acta 47 (2002) 1173.

    Article  CAS  Google Scholar 

  25. Q. Chi, T. Tatsuma, M. Ozaki, T. Sotomura and N. Oyama, J. Electrochem. Soc. 145 (1998) 2369.

    CAS  Google Scholar 

  26. H. Gomez, R. Henriquez, R. Schrebler, G. Riveros and R. Cordova, Electrochim. Acta 46 (2001) 4309.

    Google Scholar 

  27. G. Sauerbrey, Z. Phys. 155 (1959) 206.

    CAS  Google Scholar 

  28. O. Melroy, K. Kanazawa, J.B. Gordon and D.A. Buttry, Langmuir 2 (1986) 697.

    Article  CAS  Google Scholar 

  29. G. Vatankhah, J. Lessard, G. Jekiewicz, A. Zolfaghari and B.E. Conway, Electrochim. Acta 48 (2003) 1613.

    Article  CAS  Google Scholar 

  30. V. Tsionsky, L. Daikhin and E. Gileadi, J. Electrochem. Soc. 143 (1996) 2240.

    CAS  Google Scholar 

  31. M. Hepel, in A. Wieckowski (Ed.), 'Interfacial Electrochemistry: Theory, Experiment and Application' (Marcel Dekker, New York, 1999), Chapter 34, p. 599.

    Google Scholar 

  32. H.A. Kozlowska, in J.O'M. Bockris, E. Yeager, B.E. Conway (Eds), 'Comprehensive Treatise of Electrochemistry', Vol. 9 (Plenum Press, New York, 1984), Chapter 2.

    Google Scholar 

  33. R.K. Burshtein, M.R. Tarasevich and V.S. Vulinskaya, Electrokhimiya 3 (1967) 349.

    CAS  Google Scholar 

  34. R. Woods, in A.J. Bard (Ed.), 'Electroanalytical Chemistry', Vol. 9 (Marcel Dekker, New York, 1976), pp. 1-162.

    Google Scholar 

  35. D.A. Buttry, in A.J. Bard (Ed.), 'Electroanalytical Chemistry', Vol. 17 (Marcel Dekker, New York, 1991).

    Google Scholar 

  36. G. Jekiewicz, G. Vatankhah, A. Zolfaghari and J. Lessard, Electrochem. Comm. 1 (1999) 416.

    Google Scholar 

  37. J.S. Gordon and D.C. Johnson, J. Electroanal. Chem. 365 (1994) 275.

    Article  Google Scholar 

  38. S. Bruckenstein and M. Shay, J. Electroanal. Chem. 188 (1985) 131.

    CAS  Google Scholar 

  39. A.E. Bolzan, I.B. Wakenge, R.C. Salvarezza and A.J. Arvia, J. Electroanal. Chem. 475 (1999) 181.

    CAS  Google Scholar 

  40. M. Tian, W.G. Pell and B.E. Conway, Electrochim. Acta 48 (2003) 2675.

    Article  CAS  Google Scholar 

  41. R. Schumacher, G. Borges and K.K. Kanazawa, Surf. Sci. 163 (1985) 1621.

    Article  Google Scholar 

  42. A.N. Correia, M.C. dos Santos, S.A.S. Machado and L.A. Avaca, J. Electroanal. Chem. 547 (2003) 53.

    Article  CAS  Google Scholar 

  43. M.J. Henderson, E. Bitziou, A.R. Hillman and E. Viel, J. Electrochem. Soc. 148 (2001) E105.

    Article  CAS  Google Scholar 

  44. G.S. Ostrom and D.A. Buttry, J. Electroanal. Chem. 256 (1988) 411.

    Article  CAS  Google Scholar 

  45. H. Angerstein-Kozlowska, B.E. Conway and W.B.A. Sharp, J. Electroanal. Chem. 43 (1973) 9.

    Article  CAS  Google Scholar 

  46. F.G. Cottrell, Z. Phys. Chem. 42 (1902) 85.

    Google Scholar 

  47. U. Mishra, S. Tripathi and K. Yadava, J. Electrochem. Soc. India 38 (1987) 147.

    Google Scholar 

  48. J. Kirchnerova and W.C. Purdy, Anal. Chim. Acta 123 (1981) 83.

    CAS  Google Scholar 

  49. Southampton Electrochemistry Group, 'Instrumental Methods in Electrochemistry', (Ellis Horwood, Chichestes, UK, 1985), Chapter 4 (Figures 4.13 and 4.14).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, M., Conway, B. Effects of Thiourea on Anodic Dissolution of Au and Surface Oxidation Behaviour in aq HClO4 Studied by Means of an EQCN. Journal of Applied Electrochemistry 34, 533–543 (2004). https://doi.org/10.1023/B:JACH.0000021870.63350.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000021870.63350.e4

Navigation