Skip to main content
Log in

Improving the Accuracy in Determining the Insulator Capacitance in Metal–Insulator–Semiconductor Structures

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of the voltage–capacitance spectroscopy of interface states in metal–insulator–semiconductor (MIS) structures are critical functions of the accuracy in determining the insulator capacitance C i, which is typically no higher than a few fractions of a percent. This substantially limits the energy range of the observed spectrum of the interface states (ΔE ≅ 0.5 eV for Si-based MIS structures) and the sensitivity to the density of the interface states at the spectrum edges (ΔN ss ≅ 1 × 1010 cm–2 eV–1). We propose a method for minimizing these errors that is based on a sequential variation of the initial estimate C iC i 0C ij, j = 0, 1, 2, ... and the identification of singular points in the dependences \(\overline {\delta V_g^{ac,in} } \) and \(\overline \delta _{ac,in} \) on C ij, where \(\overline {\delta V_g^{ac,in} } \) are the mean arithmetic values of the voltage difference between the experimental and ideal voltage–capacitance characteristic and \(\overline \delta _{ac,in} \) are the rms deviations of the voltage \(\overline {\delta V_g^{ac,in} } \) values taken in the high-accumulation (ac) and inversion (in) regions from \(\delta V_g^{ac,in} \) values. The highest (≅10–4%) accuracy in determining C i is achieved in the regions of the equidistant experimental and ideal voltage–capacitance characteristic. This method, combined with the technique of Ψ s s diagrams, ensures an extension of ΔE to ≅0.9 eV at ΔN ss ≅ 1 × 1010 cm–2 eV–1 and the possibility of determining the sign and density of the fixed charge in the gate insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

EFERENCES

  1. Rzhanov, A.V., Elektronnye protsessy na poverkhnosti poluprovodnikov(Electronic Processes on the Surfaces of Semiconductors)}, Moscow: Nauka, 1971.

    Google Scholar 

  2. Nicollian, E.H. and Brews, J.R., MOS (Metal Oxide Semiconductor) Physics and Technology, New York: Willey, 1982.

    Google Scholar 

  3. Sze, S.M., Physics of Semiconductor Devices, New York: Wiley, 1981, vols. 1, 2. Translated under the title Fizika poluprovodnikovykh priborov, lMoscow: Mir, 1984.

    Google Scholar 

  4. Garrett, C.G. and Brattain, W.H., Phys. Rev., 1955, vol. 99, no. 2, p. 376.

    Google Scholar 

  5. Berglund, C.N., IEEE Trans. Electron. Devices, 1966, vol. 13, no. 10, p. 701.

    Google Scholar 

  6. Zhdan, A.G., Kukharskaya, N.F., and Chucheva, G.V., Prib. Tekh. Eksp., 2002, no. 1, p. 120.

  7. Zhdan, A.G., Kukharskaya, N.F., and Chucheva, G.V., Fiz. Tech. Poluprovodn., 2003, vol. 37, no. 6, p. 686.

    Google Scholar 

  8. Zhdan, A.G., Kukharskaya, N.F., and Chucheva, G.V., Prib. Tekh. Eksp., 2003, no. 2, p. 96.

  9. Leroux, C., Ghibaudo, G., and Reimbold, G., et al., Solid State Electron., 2002, vol. 46, p. 1849.

    Google Scholar 

  10. Ootsuka, F., IEEE Trans. Electron. Devices, 2002, vol. 49, no. 12, p. 2345.

    Google Scholar 

  11. Gol'dman, E.I., Zhdan, A.G., and Chucheva, G.V., Prib. Tekh. Eksp., 1997, no. 6, p. 110.

  12. Hou, Y.T., Li, M.F., Jin, Y., and Lai, W.H., J. Appl. Phys., 2002, vol. 91, no. 1, p. 258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhdan, A.G., Kukharskaya, N.F. & Chucheva, G.V. Improving the Accuracy in Determining the Insulator Capacitance in Metal–Insulator–Semiconductor Structures. Instruments and Experimental Techniques 47, 791–798 (2004). https://doi.org/10.1023/B:INET.0000049702.34357.44

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INET.0000049702.34357.44

Keywords

Navigation