Skip to main content
Log in

Relativistic Gamow Vectors

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Whereas in Dirac quantum mechanics and relativistic quantum field theory one uses Schwartz space distributions, the extensions of the Hilbert space that we propose uses Hardy spaces. The in- and out-Lippmann-Schwinger kets of scattering theory are functionals in two rigged Hilbert space extensions of the same Hilbert space. This hypothesis also allows to introduce generalized vectors corresponding to unstable states, the Gamow kets. Here the relativistic formulation of the theory of unstable states is presented. It is shown that the relativistic Gamow vectors of the unstable states, defined by a resonance pole of the S-matrix, are classified according to the irreducible representations of the semigroup of the Poincaré transformations (into the forward light cone). As an application the problem of the mass definition of the intermediate vector boson Z is discussed and it is argued that only one mass definition leads to the exponential decay law, and that is not the standard definition of the on-the-mass-shell renormalization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoine, J. P. (1969). Journal of Mathematical Physics 10, 53.

    Google Scholar 

  • Bargmann, V. and Wigner, E. P. (1948). Proceedings of the National Academy of Sciences of the United States of America 34, 211.

    Google Scholar 

  • Bernicha, A., López Castro, G., and Pestieu, J. (1994). Physical Review D 50, 4454.

    Google Scholar 

  • Bernicha, A., López Castro, G., and Pestieu, J. (1996). Nuclear Physics A 597, 623.

    Google Scholar 

  • Bohm, A. (1966). Boulder Lectures in Mathematical Physics 9A, 255.

    Google Scholar 

  • Bohm, A. (1978a). The Rigged Hilbert Space and Quantum Mechanics (Lecture Notes in Physics, Vol. 78), A. Bohm and J. D. Dollard, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Bohm, A. (1978b). Letters of Mathematical Physics 3, 455.

    Google Scholar 

  • Bohm, A. (1981). Journal of Mathematical Physics 22, 2813.

    Google Scholar 

  • Bohm, A. (1999). Physical Review A 60, 861.

    Google Scholar 

  • Bohm, A., Maxson, S., Loewe, M., and Gadella, M. (1997). Physica A 236, 485.

    Google Scholar 

  • Gel'fand, I. M. and Vilenkin, N. Ya. (1994). Generalized Functions, Vol. 4, Academic Press, New York, p. 103.

    Google Scholar 

  • Hagiwara, K. et al., (2002). Physical Review D 66, 010001.

    Google Scholar 

  • Maurin, K. (1968). General Eigenfunction Expansions and Unitary Representations of Topological Groups, Polish Scientific Publishers (PWN), Warszawa.

    Google Scholar 

  • Roberts, J. E. (1966). Journal of Mathematical Physics 7, 1097.

    Google Scholar 

  • Sirlin, A. (1991a). Physical Review Letters 67, 2127.

    Google Scholar 

  • Sirlin, A. (1991b). Physics Letters B 267, 240.

    Google Scholar 

  • Stuart, R. G. (1991). Physics Letters B 262, 113.

    Google Scholar 

  • Stuart, R. G. (1997). Physical Review D 56, 1515.

    Google Scholar 

  • Veltman, M. (1964). Physica 29, 186.

    Google Scholar 

  • Wigner, E. P. (1939). Annals of Mathematics 40, 149.

    Google Scholar 

  • Willenbrock, S. and Valencia, G. (1991). Physics Letters B 259, 373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kielanowski, P. Relativistic Gamow Vectors. International Journal of Theoretical Physics 42, 2339–2355 (2003). https://doi.org/10.1023/B:IJTP.0000005961.79955.4a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000005961.79955.4a

Navigation