Skip to main content
Log in

Measurement of Dynamically Changing Thermal Diffusivity by the Forced Rayleigh Scattering Method (Measurement of Gelation Process)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A measuring method of the thermal diffusivity with high temporal and spatial resolutions has been studied. The forced Rayleigh scattering method is an optical technique to measure the thermal diffusivity of solids and liquids. Based on its characteristics, this method has the applicability to become a “thermal diffusivity real-time monitoring system.” The maximum repetition rate of thermal diffusivity measurement is determined by the attenuation of an excited temperature distribution by laser heating, and a mathematical model of three-dimensional heat conduction is constructed. The temporal resolution of continuous measurements was improved to about 1 s, and the sol-gel transition of a gellan gum aqueous solution was studied to check the validity of the dynamic measurement of thermal diffusivity. Through the gelation process, the dynamical change of the thermal diffusivity was measured, and the gelation point of the solution was identified from a series of thermal diffusivity data. The results indicate the capability of the forced Rayleigh scattering method to be a real-time thermal diffusivity measurement technique for monitoring the rapidly changing process of a material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. Measurement of the Transport Properties of Fluids, Experimental Thermodynamics (Blackwell Scientific Pubs., London, 1991), Vol. 3, pp. 111-192.

    Google Scholar 

  2. F. Righini and A. Cezairliyan, High Temp.-High Press. 5:481(1973).

    Google Scholar 

  3. D. P. Almond and P. M. Patel, Photothermal Science and Techniques, Physics and its Applications (Chapman & Hall, London, 1996), Vol. 10, pp. 199-214.

    Google Scholar 

  4. A. Leipertz, Int. J. Thermophys. 9:897(1988).

    Google Scholar 

  5. M. Motosuke and A. Nagashima, Proc. 16th Euro. Conf. Thermophys. Prop. (2002), p. 248.

  6. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings, Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1986), Vol.50, pp. 84-89.

    Google Scholar 

  7. G. Wu, M. Fiebig, and J. Wang, Fluid Phase Equilib. 88:239(1993).

    Google Scholar 

  8. E. V. Ivakin, A. V. Sukhodolov, V. G. Ralchenko, and A. V. Khomich, Quant. Electron. 32:367(2002).

    Google Scholar 

  9. Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59:1156(1988).

    Google Scholar 

  10. H. S. Carslaw, and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford, London, 1959), pp. 353-386.

  11. J. E. Bertie and Z. Lan, Appl. Spectrosc. 50:1047(1996).

    Google Scholar 

  12. T. Makino, M. Edamura, A. Kato, and A. Yoshida, Proc. 11th Jpn. Symp. Thermophys. Prop. (1990), p. 243 (in Japanese).

  13. R. Chandrasekaran, A. Radha, and V. G. Thailambal, Carbohydr. Res. 224:1(1992).

    Google Scholar 

  14. M. L. V. Ramires, C. A. Nieto de Castro, Y. Nagasaka, A. Nagashima, M. J. Assael, and W. A. Wakeham, J. Phys. Chem. Ref. Data 24:1377(1995).

    Google Scholar 

  15. W. Wagner and A. Pruß, J. Phys. Chem. Ref. Data 31:387(2002).

    Google Scholar 

  16. S. Otsubo, T. Ibata, Y. Nagasaka, and A. Nagashima, Trans. Jpn. Soc. Mech. Eng. B64:184(1998) (in Japanese).

    Google Scholar 

  17. Y. Izumi, S. Saito, and K. Soma, Progr. Colloid Polym. Sci. 114:48(1999).

    Google Scholar 

  18. E. Miyoshi and K. Nishinari, Progr. Colloid Polym. Sci. 114:68(1999).

    Google Scholar 

  19. K. Nishinari, Colloid Polym. Sci. 275:1093(1997).

    Google Scholar 

  20. M. Akutu, K. Kubota, and K. Nakamura, Progr. Colloid Polym. Sci. 114:56(1999).

    Google Scholar 

  21. M. Matsukawa, Z. Tang, and T. Watanabe, Progr. Colloid Polym. Sci. 114:15(1999).

    Google Scholar 

  22. Y. Liu and R. B. Pandey, J. Chem. Phys. 105:825(1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Motosuke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motosuke, M., Nagasaka, Y. & Nagashima, A. Measurement of Dynamically Changing Thermal Diffusivity by the Forced Rayleigh Scattering Method (Measurement of Gelation Process). International Journal of Thermophysics 25, 519–531 (2004). https://doi.org/10.1023/B:IJOT.0000028487.62096.b7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000028487.62096.b7

Navigation