Skip to main content
Log in

Use of the DIPPR Database for the Development of QSPR Correlations: Solid Vapor Pressure and Heat of Sublimation of Organic Compounds

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A group-contribution method has been developed to estimate the heat of sublimation (ΔH sub) at the triple point for organic solids. The correlation was developed using ΔH sub values from a training set of 218 compounds, and it was tested by comparing predicted and solid vapor pressures for 87 compounds (1103 data points). The predicted solid vapor pressures were obtained from the ΔH sub correlation using the Clausius–Clapeyron equation. The absolute average deviation in the logarithm of vapor pressure was 0.371. The new method compares favorably with Bondi's method for prediction of ΔH sub and represents an improvement over other available methods for predicting solid vapor pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. Rowley, W. V. Wilding, J. L. Oscarson, N. A. Zundel, T. L. Marshall, T. E. Daubert, and R. P. Danner, DIPPR &registered< Data Compilation of Pure Compound Properties (Design Institute for Physical Properties, AIChE, New York, 2002).

    Google Scholar 

  2. D. Ericksen, W. V. Wilding, J. L. Oscarson, and R. L. Rowley, J. Chem. Eng. Data 47:1293(2002).

    Google Scholar 

  3. T. A. Knotts, W. V. Wilding, J. L. Oscarson, and R. L. Rowley, J. Chem. Eng. Data 46:1007(2001).

    Google Scholar 

  4. B. T. Goodman, W. V. Wilding, J. L. Oscarson, and R. L. Rowley, J. Chem. Eng. Data 49:24(2004).

    Google Scholar 

  5. TSAR Version 3.2 (Oxford Molecular Group, Oxford Molecular Limited, Oxford, 1998).

  6. D. Wininger, Chem. Inf. Comput. Sci. 28:31(1998).

    Google Scholar 

  7. SMILES Tutorial (1998), www.daylight.com/smiles/f_smiles.html.

  8. A. Bondi, J. Chem. Eng. Data 8:371(1963).

    Google Scholar 

  9. A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses (Wiley, New York, 1968), pp. 453-479.

    Google Scholar 

  10. D. MacKay, A. Bobra, D. W. Chan, and W. Y. Shlu, Environ. Sci. Technol. 16:645(1982).

    Google Scholar 

  11. E. Neau, S. Gamier, and L. Avaullee, Fluid Phase Equilib. 164:173(1999).

    Google Scholar 

  12. L. Constantinou and R. Gani, AIChE J. 40:1697(1994).

    Google Scholar 

  13. L. Constantinou, R. Gani, and J. P. O'Connell, Fluid Phase Equilib. 103:11(1995).

    Google Scholar 

  14. L. Coniglio, L. Trassy, and E. Rauzy, Ind. Eng. Chem. Res. 39:5037(2000).

    Google Scholar 

  15. L. Coniglio, Thesis (Université d'Aix-Marseille III, 1993).

  16. L. Trassy, Thesis (Université de la Méditerranée, 1998).

  17. L. Avaullée, L. Trasy, E. Neau, and J. N. Jaubert, Fluid Phase Equilib. 139:155(1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Rowley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, B.T., Wilding, W.V., Oscarson, J.L. et al. Use of the DIPPR Database for the Development of QSPR Correlations: Solid Vapor Pressure and Heat of Sublimation of Organic Compounds. International Journal of Thermophysics 25, 337–350 (2004). https://doi.org/10.1023/B:IJOT.0000028471.77933.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000028471.77933.80

Navigation