Skip to main content
Log in

Proposal of a Microwave-Driven Semiconductor Superlattice Oscillator for Generation of THz Radiation

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

We present the proposal of a microwave-driven semiconductor superlattice oscillator. We show that the interplay of a microwave pump field with a synchronous harmonic field can make a semiconductor superlattice to a gain medium for the harmonic field. Placing the superlattice in a resonator for the harmonic field allows the operation of an oscillator. The gain mechanism is based on Bloch oscillations of miniband electrons. The gain is mediated either by the interaction of the high-frequency field with the single electrons or with space charge domains or with both. The microwave-driven superlattice oscillator should be suitable for generation of coherent radiation up to several THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Develop. 14, 61(1970).

    Google Scholar 

  2. S. A. Ktitorov, G. S. Simin, and V. Ya. Sindalovskii, Bragg reflections and the high-frequency conductivity of an electronic solid-state-plasma, Sov. Phys. Solid State 13, 1872(1972).

    Google Scholar 

  3. F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Physik 52, 555(1928).

    Google Scholar 

  4. C. Zener and H. H. Wills, A theory of the electrical breakdown of solid dielectrics, Proc. Roy. Soc. London, Ser. A 145, 523(1934).

    Google Scholar 

  5. A. A. Ignatov et al., Esaki-Tsu superlattice oscillator: Josephson-like dynamics of carriers, Phys. Rev. Lett. 70, 1996(1993).

    Google Scholar 

  6. A. A. Ignatov et al., THz-field induced nonlinear transport and dc voltage generation in a semiconductor superlattice due to Bloch oscillations, Z. Phys. B 4, 187(1995).

    Google Scholar 

  7. H. Kroemer, On the nature of the negative-conductivity resonance in a superlattice Bloch oscillator, condmat/0007482 (unpublished).

  8. H. Kroemer, Large-amplitude oscillation dynamics and domain suppression in a superlattice Bloch oscillator, condmat/0009311 (unpublished).

  9. E. Schomburg, N. V. Demarina, and K. F. Renk, Amplification of a terahertz field in a semiconductor superlattice via phase-locked k-space bunches of Bloch oscillating electrons, Phys. Rev. B 67, 155302(2003).

    Google Scholar 

  10. A. Sibille et al., Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices, Phys. Rev. Lett. 64, 52(1990).

    Google Scholar 

  11. K. Unterrainer et al., Inverse Bloch oscillator: Strong terahertz-photocurrent resonances at the Bloch frequency, Phys. Rev. Lett. 76, 2973(1996).

    Google Scholar 

  12. A. A. Ignatov et al., Response of a Bloch oscillator to a THz-field, Ann. Phys. 3, 137(1994).

    Google Scholar 

  13. S. Winnerl et al., Ultrafast detection and autocorrelation of picosecond THz radiation pulses with a GaAs/AlAs superlattice, Appl. Phys. Lettl. 73, 2983(1998).

    Google Scholar 

  14. F. Klappenberger et al., Broadband semiconductor superlattice detector for THz radiation, Appl. Phys. Lett. 78, 1673(2001).

    Google Scholar 

  15. J. Feldmann et al., Optical investigation of Bloch oscillations in a semiconductor superlattice, Phys. Rev. B 46, 7252(1992).

    Google Scholar 

  16. F. Löser et al., Dynamics of Bloch oscillations under the influence of scattering and coherent plasmon coupling, Phys. Rev. B 61, R13 373(2000).

    Google Scholar 

  17. C. Waschke et al., Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice, Phys. Rev. Lett. 70, 3319(1993).

    Google Scholar 

  18. Y. Shimada et al., Terahertz conductivity and possible Bloch gain in semiconductor superlattices, Phys. Rev. Lett. 90, 046806–1(2003).

    Google Scholar 

  19. M. BÜttiker and H. Thomas, Current Instability and Domain Propagation Due to Bragg Scattering, Phys. Rev. Lett. 38, 78(1977).

    Google Scholar 

  20. K. Hofbeck et al., High-frequency self-sustained current oscillation in an Esaki-Tsu superlattice monitored via microwave emission, Phys. Lett. A 218, 349(1996).

    Google Scholar 

  21. E. Schomburg et al., Current oscillation in superlattices with different miniband widths, Phys. Rev. B 58, 4035(1998).

    Google Scholar 

  22. R. Scheuerer et al., Frequency multiplication of microwave radiation by propagating space-charge domains in a semiconductor, Appl. Phys. Lett. 82, 2826(2003).

    Google Scholar 

  23. M. Haeussler et al., Microwave frequency multiplication by use of space charge domains in a semiconductor superlattice, Electron. Lett. 39, 628(2003).

    Google Scholar 

  24. S. Winnerl, et al., Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of Bloch oscillations, Appl. Phys. Lett. 77, 1762(2000).

    Google Scholar 

  25. A. Wacker et al., Semiconductor superlattices: A model system for nonlinear transport, Physics Reports 357, 1(2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klappenberger, F., Renk, K.F. Proposal of a Microwave-Driven Semiconductor Superlattice Oscillator for Generation of THz Radiation. International Journal of Infrared and Millimeter Waves 25, 429–438 (2004). https://doi.org/10.1023/B:IJIM.0000019310.95601.fc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJIM.0000019310.95601.fc

Navigation