Skip to main content
Log in

Stimulated emission at transitions between Wannier–Stark ladders in semiconductor superlattices

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

New intraband semiconductor lasers—Wannier–Stark lasers—based on simple GaAs (150 Å, quantum well)/GaAlAs (19 Å with an aluminum fraction of 12%, barrier) superlattices have been demonstrated. The amplification mechanism in these lasers is based on population inversion between the ground Wannier–Stark level in the superlattice quantum wells and the weakly populated upper Wannier–Stark level in the wells two, three, or four periods down in the applied potential. Multiple regions of intense stimulated microwave emission near voltages of 8, 13, and 20 V (i.e., in the vicinity of resonances between these Wannier–Stark levels of the superlattice) have been discovered in the laser chips. The stimulated emission emerges in the circuit formed by the chip and its wiring. The emission from one of the chips at a temperature of up to 150 K (near 20 V applied to the chip) occurs at a frequency of about 7.3 GHz and has an estimated power of up to 1 W. It has been shown that the negative conductivity responsible for the emission still persists at 300 K but the emission is unseen owing to high losses in the circuit at this temperature. The superlattice wafer has been grown by metalorganic chemical vapor deposition. It consists of 1000 periods and a stop layer, to produce a metal–superlattice–metal terahertz resonator. Terahertz radiation has not been observed owing to a low amplification, as compared to losses in the resonator. According to the performed experiments, calculations, and discussions, such superlattices as radiation sources in gigahertz, terahertz, and higher frequency ranges could compete with quantum cascade lasers under appropriate optimization of their parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Article  Google Scholar 

  2. H. Kroemer, Z. Phys. 134, 435 (1953); arxiv.org/pdf/cond-mat/0007482.

    Article  ADS  Google Scholar 

  3. V. A. Yakovlev, Sov. Phys. Solid State 3, 1442 (1961).

    Google Scholar 

  4. L. V. Keldysh, Sov. Phys. Solid State 4, 1658 (1962).

    Google Scholar 

  5. R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  6. R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 6, 120 (1972).

    Google Scholar 

  7. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, Science 264, 553 (1994).

    Article  ADS  Google Scholar 

  8. R. Kohler, A. Tredicucci, F. Beltram, H. Beere, E. Linfield, A. Devies, D. Ritchie, R. Iotti, and F. Rossi, Nature 417, 156 (2002).

    Article  ADS  Google Scholar 

  9. B. S. Williams, S. Kumar, H. Callebaut, and G. Hu, Appl. Phys. Lett. 82, 2124 (2003).

    Article  ADS  Google Scholar 

  10. D. S. Williams, Nature Photon. 1, 517 (2007).

    Article  ADS  Google Scholar 

  11. M. I. Amanti, G. Scalari, R. Terazzi, M. Fisher, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, New J. Phys. 11, 125022 (2009).

    Article  ADS  Google Scholar 

  12. A. A. Andronov, E. P. Dodin, D. I. Zinchenko, Yu. N. Nozdrin, A. A. Marmalyuk, and A. A. Padalitsa, Quantum Electron. 40, 400 (2010).

    Article  ADS  Google Scholar 

  13. A. A. Andronov, E. P. Dodin, D. I. Zinchenko, and Yu. N. Nozdrin, Semiconductors 47, 63 (2013).

    Article  ADS  Google Scholar 

  14. C. Sirtory, F. Capasso, J. Faist, A. Hutchinson, D. L. Sivco, and A. Cho, IEEE J. Quantum Electron. 34, 1722 (1998).

    Article  ADS  Google Scholar 

  15. H. Callebaut and Q. Hu, J. Appl. Phys. 98, 104505 (2005).

    Article  ADS  Google Scholar 

  16. S.-C. Lee, F. Banit, M. Woerner, and A. Wacker, Phys. Rev. B 73, 245320 (2006).

    Article  ADS  Google Scholar 

  17. M. Lindskog, J. M. Wolf, V. Trinite, V. Leverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, Appl. Phys. Lett. 105, 103106 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andronov.

Additional information

Original Russian Text © A.A. Andronov, E.P. Dodin, D.I. Zinchenko, Yu.N. Nozdrin, M.A. Ladugin, A.A. Marmalyuk, A.A. Padalitsa, V.A. Belyakov, I.V. Ladenkov, A.G. Fefelov, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheckoi Fiziki, 2015, Vol. 102, No. 4, pp. 235–239.

See the supplemental materials for this paper at www.jetpletters.ac.ru.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronov, A.A., Dodin, E.P., Zinchenko, D.I. et al. Stimulated emission at transitions between Wannier–Stark ladders in semiconductor superlattices. Jetp Lett. 102, 207–211 (2015). https://doi.org/10.1134/S0021364015160031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015160031

Keywords

Navigation