Skip to main content
Log in

W-Band Second-Harmonic Gyrotron Traveling Wave Amplifier with Distributed-Loss and Severed Structures

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The second harmonic TE02 gyrotron traveling wave amplifier (gyro-TWT) is a high-power, broadband, millimeter-wave amplifier with a low applied magnetic field. Mode-selective interaction circuits were applied to suppressing spurious oscillations. However, the mode-selective interaction circuit may perturb the operating mode in the gyro-TWT. A multi-stage gyro-TWT design with distributed-loss and severed structures is proposed to stabilize the amplification. This study presents a nonlinear analysis of typical oscillations, including absolute instability, gyrotron backward oscillation (gyro-BWO) and reflective oscillation. The lossy and severed sections of the multi-stage gyro-TWT seem to increase effectively the start-oscillation currents of the absolute instability, gyro-BWO, and reflection oscillation. The multi-stage gyro-TWT is predicted to yield a peak output power of 215 kW at 89.9 GHz with an efficiency of 14.3 %, a saturated gain of 60 dB and a bandwidth of 1.7 GHz for a 100 kV, 15 A electron beam with an axial velocity spread Δν z/ν z = 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Seftor, V. L. Granatstein, K. R. Chu, P. Sprangle, and M. E. Real, The electron cyclotron maser as a high power traveling-wave amplifier of millimeter waves, IEEE J. Quantum Electron., vol. 15, no. 9, pp. 848-853, 1979.

    Google Scholar 

  2. L. R. Barnett, K. R. Chu, J. M. Baird, V. L. Granatstein, and A. T. Drobot, Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier, in Proc. Tech. Dig. Int. Electron Devices Meeting, New York: IEEE, pp. 164-167, 1979.

    Google Scholar 

  3. R. S. Symons, H. R. Jory, S. J. Hegji, and P. E. Ferguson, An experimental gyro-TWT, IEEE Trans. Microwave Theory Tech., vol. MTT-29, no. 3, pp. 181-184, 1981.

    Google Scholar 

  4. D. S. Furuno, D. B. McDermott, C. S. Kou, N. C. Luhmann, Jr., and P. Vitello, Theoretical and experimental investigation of a high-harmonic gyro-traveling-wave-tube amplifier, Phys. Rev. Lett., vol. 62, no. 11, pp. 1314-1317, 1989.

    Google Scholar 

  5. W. Lawson, J. Chang, J. P. Calame, M. Castle, B. Hogan, V. L. Granatstein, M. Reiser, and G. P. Saraph, High-power operation of a three-cavity X-band coaxial gyroklystron, Phys. Rev. Lett., vol. 81, no. 14, pp. 3030-3033, 1998.

    Google Scholar 

  6. A. T. Lin, K. R. Chu, C. C. Lin, C. S. Kou, D. B. Mcdermott, and N. C. Luhmann, Jr., Marginal stability design criterion for gyro-TWT and comparison of fundamental with second harmonc operation, Int. J. Electron., vol. 72, no. 5, pp. 813-885, 1992.

    Google Scholar 

  7. C. S. Kou, Q. S. Wang, D. B. McDermott, A. T. Lin, K. R. Chu, and N. C. Luhmann, Jr., High-power harmonic gyro-TWT-Part I: linear theory and oscillation study, IEEE Trans. On Plasma Sci., vol. 20, no. 3, pp. 155-162, 1992.

    Google Scholar 

  8. Q. S. Wang, C. S. Kou, D. B. McDermott, A. T. Lin, K. R. Chu, and N. C. Luhmann, Jr., High-power harmonic gyro-TWT-part II: nonlinear theory and design, IEEE Trans. Microwave Theory Tech. vol., 20, no. 3, pp. 163-169, 1992.

    Google Scholar 

  9. L. R. Barnett, J. M. Baird, Y. Y. Lau, K. R. Chu, and V. L. Grannatstein, A high gain single stage gyrotron traveling-wave amplifier, in Proc. Tech. Dig. Int. Electron Devices Meeting, pp. 314-317, 1980.

  10. Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Demonstration of marginal stability theory by a 200-kW second-harmonic gyro-TWT amplifier, Phys. Rev. Lett., vol. 75, no. 23, pp. 4322-4325, 1995.

    Google Scholar 

  11. W. L. Menninger, B. G. Danly, and R. J. Temkin, Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments, IEEE Trans. Plasma Sci., vol. 24, no. 3, pp. 687-699, 1996.

    Google Scholar 

  12. L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, Y. K. Lau, and C. C. Tu, Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube, Phys. Rev. Lett., vol. 63, no. 10, pp. 1062-1065, 1989.

    Google Scholar 

  13. Q. S. Wang, D. B. McDermott, C. K. Chong, C. S. Kou, K. R. Chu, and N. C. Luhmann, Jr., Stable 1 MW, third-harmonic gyro-TWT amplifier, IEEE Trans. Plasma Sci., vol. 22, no. 5, pp. 608-615, 1994.

    Google Scholar 

  14. K. C. Leou, D. B. McDermott, A. J. Balkcum, and N. C. Luhmann, Jr., Stable high power TE01 gyro-TWT amplifiers, IEEE Trans. Plasma Sci., vol. 22, no. 5, pp. 585-592, 1994.

    Google Scholar 

  15. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, Ultrahigh-gain gyrotron traveling wave amplifier, Phys. Rev. Lett., vol. 81, no. 21, pp. 4760-4763, 1998.

    Google Scholar 

  16. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. J. Dialetis, Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier, IEEE Trans. Microwave Theory Tech., vol. 27, no. 2, pp. 391-404, 1999.

    Google Scholar 

  17. K. R. Chu, L. R. Barnett, H. Y. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, Stabilizing of absolute instabilities in gyrotron traveling wave amplifier, Phys. Rev. Lett., vol. 74, no. 7, pp. 1103-1106, 1995.

    Google Scholar 

  18. Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Operation of a stable 200-kW second-harmonic gyro-TWT amplifier, IEEE Trans. Microwave Theory Tech., vol. 24, no. 3, pp. 700-706. 1996.

    Google Scholar 

  19. Q. S. Wang, H. E. Huey, D. B. McDermott, Y. Hirata, and N. C. Luhmann, Jr., Design of a W-band second-harmonic TE02 gyro-TWT amplifier, IEEE Trans. Plasma Sci., vol. 28, no. 6, pp. 2232-2237, 2000.

    Google Scholar 

  20. Y. S. Yeh, T. S. Wu, Y. T. Lo, C. W. Su, and S. C. Wu, Stability analysis of TE01 gyrotron travelling wave amplifiers, Int. J. Electron., to be published.

  21. M. T. Walter, R. M. Gilgenbach, J. W. Luginsland, J. M. Hochman, J. I. Rintamaki, R. L. Jaynes, Y. Y. Lau, and T. A. Spencer, Effects of tapering on gyroteon backward-wave oscillators, IEEE Trans. Plasma Sci., vol. 24, no. 3, pp. 636-647, 1996.

    Google Scholar 

  22. K. R. Chu, L. R. Barnett, and V. L. Granstein, Theory of a wide-band distributed gyrotron traveling-wave amplifier, IEEE Trans. Electron Devives, vol. ED-28, no. 7, pp. 866-871, 1981.

    Google Scholar 

  23. L. R. Barnett, Y. Y. Lau, K. R. Chu, and V. L. Granstein, A experimental wide-band distributed gyrotron traveling-wave amplifier, IEEE Trans. Electron Devives, vol. ED-28, no. 7, pp. 872-875, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, Y.S., Hung, C.L., Su, CW. et al. W-Band Second-Harmonic Gyrotron Traveling Wave Amplifier with Distributed-Loss and Severed Structures. International Journal of Infrared and Millimeter Waves 25, 29–42 (2004). https://doi.org/10.1023/B:IJIM.0000012760.90309.6f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJIM.0000012760.90309.6f

Navigation