Skip to main content
Log in

Excitation and Suppression of the Frequency Self-Modulation Instability in a W-band Gyro-TWT

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Two different excitation mechanisms of the frequency self-modulation (FSM) instability in a W-band dielectric-loaded gyrotron traveling-wave tube (gyro-TWT) were clearly revealed and explained. The FSM properties caused by the window reflection and collector ‘bottleneck’ versus operating beam current and pitch factor are respectively investigated. In order to solve the FSM instability, two improved gyro-TWT prototypes with broadband, low-reflection-level meta-surface window and a collector without ‘bottleneck’ were respectively fabricated and hot tested. The FSM excitation mechanism was well verified and excellent tube stability with a zero-driven signal was successfully achieved through our experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. K. R. Chu. The electron cyclotron maser. Reviews of Modern Physics, 76:489-540, May 2004.

    Article  Google Scholar 

  2. S. P. Sabchevski, M. Y. Glyavin, S. Mitsudo, Y. Tatematsu, and T. Idehara. Novel and emerging applications of the gyrotrons worldwide: Current status and prospects. Journal of Infrared, Millimeter, and Terahertz Waves, 42:715-741, July 2021.

    Article  Google Scholar 

  3. M. G. Czerwinski and J. M. Usoff. Development of the haystack ultrawideband satellite imaging radar. volume 21, 2014.

  4. S. V. Samsonov, G. G. Denisov, I. G. Gachev, and A. A. Bogdashov. CW operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube. IEEE Electron Device Letters, 41:773-776, May 2020.

    Article  Google Scholar 

  5. S. V. Samsonov, A. A. Bogdashov, G. G. Denisov, I. G. Gachev, and S. V. Mishakin. Cascade of two W-band helical-waveguide gyro-TWTs with high gain and output power: Concept and modeling. IEEE Transactions on Electron Devices, 64:1305-1309, January 2017.

    Article  Google Scholar 

  6. W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. Cross. Broad-band amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region. Physical Review Letters, 119 18:184801, October 2017.

    Article  Google Scholar 

  7. C. H. Du, T. H. Chang, P. K. Liu, Y. Huang, P. X. Jiang, S. X. Xu, Z. H. Geng, B. L. Hao, L. X., G. F. Liu, Z. D. Li, and S. H. Shi. Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit. IEEE Transactions on Electron Devices, 60:2388-2394, June 2013.

    Article  Google Scholar 

  8. H. H. Song, D. B. Mcdermott, Y. Hirata, L. R. Barnett, C. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann. Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier. Physics of Plasmas, 11:2935-2941, April 2004.

    Article  Google Scholar 

  9. X. Zeng, C. H. Du, A. Li, S. Gao, Z. Y. Wang, Y. C. Zhang, Z. X. Zi, and J. J.Feng. Design and preliminary experiment of W-band broadband TE02 mode gyro-TWT. Electronics, 10, August 2021.

  10. G. Liu, W. Jiang, Y. L. Yao, Y. Wang, W. J. Wang, Y. J. Cao, J. X. Wang, and Y. Luo. High average power test of a W-band broadband gyrotron traveling wave tube. IEEE Electron Device Letters, 43:950-953, June 2022.

    Article  Google Scholar 

  11. G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen. Nonstationary phenomena in tapered gyro-backward-wave oscillators. Physical Review Letters, 87 21:218301, October 2001.

    Article  Google Scholar 

  12. S. Alberti, J. P. Ansermet, K. A. Avramides, F. Braunmueller, P. Cuanillon, J. Dubray, D. Fasel, J-Ph. Hogge, A. Macor, E. Rijk, M. D. Silva, M. Q. Tran, T. M. Tran, and Q. Vuillemin. Experimental study from linear to chaotic regimes on a terahertz-frequency gyrotron oscillator. Physics of Plasmas, 19:123102, December 2012.

    Article  Google Scholar 

  13. O. Dumbrajs and H. Kalis. Nonstationary oscillations in gyrotrons revisited. Physics of Plasmas, 22:053113, May 2015.

    Article  Google Scholar 

  14. N. S. Ginzburg, R. M. Rozental, A. S. Sergeev, A. E. Fedotov, I. V. Zotova, and V. P. Tarakanov. Generation of rogue waves in gyrotrons operating in the regime of developed turbulence. Physical Review Letters, 119 3:034801, May 2017.

    Article  Google Scholar 

  15. Y. Wang, G. Liu, Y. J. Cao, W. J. Wang, W. Jiang, J. X. Wang, and Y. Luo. Influence of the output window reflection on the performance of W-band gyrotron traveling wave tubes. IEEE Transactions on Electron Devices, 69:1416-1422, March 2022.

    Article  Google Scholar 

  16. G. Liu, Y. J. Cao, Y. Wang, W. Jiang, W. J. Wang, J. X. Wang, and Y. Luo. Design and cold test of a G-band 10-kW-level pulse TE01-mode gyrotron traveling-wave tube. IEEE Transactions on Electron Devices, 69:2668-2674, May 2022.

    Article  Google Scholar 

  17. W. Jiang, B. X. Dai, C. X. Lu, G. Liu, J. X. Wang, Y. L. Pu, and Y. Luo. High average power investigation of dielectric dissipation in the W-band gyro-TWT. IEEE Transactions on Electron Devices, 69:3926-3932, July 2022.

    Article  Google Scholar 

  18. K. A. Avramidis, Z. C. Ioannidis, S. Kern, A. Samartsev, I. Gr. Pagonakis, I. G. Tige-lis, and J. Jelonnek. A comparative study on the modeling of dynamic after-cavity interaction in gyrotrons. Physics of Plasmas, 22:053106, May 2015.

    Article  Google Scholar 

  19. Y. Wang, G. Liu, Y. J. Cao, W. J. Wang, W. Jiang, Y. L. Pu, J. X. Wang, and Y. Luo. Broadband and high-power meta-surface dielectric window for W-band gyrotron traveling wave tubes. IEEE Electron Device Letters, 42:1386-1389, September 2021.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is sponsored by the National Natural Science Foundation of China under Grant 61921002 and 62171100.

Author information

Authors and Affiliations

Authors

Contributions

G. L. wrote the main manuscript text. Y. W. prepared all the figures. G. L., Y. W., and Y. J. Cao performed the experimental measurement. G. L., W. J., and Y. Y. Yao carried out the design and simulation analysis. J. X. Wang and Y. Luo participated in the overall design, analysis, and discussion. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guo Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, Y., Cao, Y. et al. Excitation and Suppression of the Frequency Self-Modulation Instability in a W-band Gyro-TWT. J Infrared Milli Terahz Waves 43, 905–919 (2022). https://doi.org/10.1007/s10762-022-00889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00889-9

Keywords

Navigation