Skip to main content
Log in

Recovery and fate of three species of marine dinoflagellates after yellow clay flocculation

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The recovery and fate of three species of dinoflagellates, Alexandrium tamarense, Cochlodinium polykrikoides and Scrippsiella trochoidea, after having been sedimented by yellow clay, were investigated in the laboratory. The effect of burying period in yellow clay pellet and mixing on the recovery of settled algal cells were studied. The morphological changes of algal cells in yellow clay pellet were also tracked. Results showed that there was almost no recovery for A. tamarense and C. polykrikoides, and the cells decomposed after 2–3 days after visible changes in morphology and chloroplasts. There was some recovery for S. trochoidea. Moreover, S. trochoidea cysts were formed in clay pellet during the period of about 14 days, with the highest abundance of 87 000 cysts g−1 clay and the incidence of cyst formation of 6.5%, which was considered as a potential threat for the further occurrence of algal blooms. S. trochoidea cysts were isolated from yellow clay and incubated to test their viability, and a germination ratio of more than 30% was obtained after incubation for 1 month. These results showed the species specificity of the mitigation effect of yellow clay. It is suggested that cautions be taken for some harmful species and thorough risk assessments be conducted before using this mitigation strategy in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. M., 1997a. Turning back the harmful red tide. Nature 38: 513–514.

    Article  CAS  Google Scholar 

  • Anderson, D. M., 1997b. Diversity of harmful algal blooms in coastal waters. Limnology and Oceanography 42: 1009–1022.

    Article  Google Scholar 

  • Anderson, D. M., J. J. Lively, E. M. Reardon & C. A. Price, 1985. Sinking characteristics of dinoflagellate cysts. Limnology and Oceanography 30: 1000–1009.

    Article  Google Scholar 

  • Anderson, D. M. & D. Wall, 1978. Potential importance of benthic cysts of Gonyaulax tamarensis hypnozygotes. Journal of Phycology 14: 124–134.

    Google Scholar 

  • Archambault, M. C., M. Bricelj, J. Grant & D. Anderson, 2002. Mitigation of harmful algal blooms with clay: effect on juvenile Mercenaria mercenaria. In Book of Abstracts, The Xth International Conference on Harmful Algae, Florida: 15.

  • Bravo, I., J. M. Franco & Reyero, M. I., 1998. PSP toxin of three life cycle stages of Gymnodinium catenatum. In Reguera, B., J. Blanco, M. Fernández & T. Wyatt (eds), Harmful Algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Santiago the Compostela: 356–362.

    Google Scholar 

  • Burkholder, J. M., 1998. Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecological Applications 8 (Suppl. 1): S37–S62.

    Google Scholar 

  • Cahoon, A. B. & M. P. Timko, 1999. Effects of nuclear y mutations on expression of plastid genes required for light-independent chlorophyll formation in Chlamydomonas. In Argyroudi-Akoyunoglou, J. H. & H. Senger (eds), The Chloroplast: from Molecular Biology to Biotechnology. Kluwer Academic Publishers, Dordrecht: 195–200.

    Google Scholar 

  • Cembella, A. D., C. Destombe & J. Turgeon, 1990. Toxin composition of alternative life history stages of Alexandrium, as determined by high-performance liquid chromatography. In Granéli, E., B. Sundström, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier Science Publishing Co. Inc., New York: 333–338.

    Google Scholar 

  • Choi, H. G., P. J. Kim, W. C. Lee, S. J. Yun, H. G. Kim & H. J. Lee, 1998. Removal efficiency of Cochlodinium polykrikoides by yellow loess. Journal of Korean Fishery Society 31: 109–113.

    Google Scholar 

  • Choi, H. G., P. Y. Lee, S. J. Yun, W. C. Lee & H. M. Bae, 1999. Control of Cochlodinium polykrikoides blooms and adsorption of nutrients in the seawater by clay and yellow loess. Bulletin of National Fishery Research & Development Institute of Korea 57: 105–110.

    Google Scholar 

  • Ewert, L., D. M. Frank, S. E. Shumway & J. E. Ward, 2002. Effect of clay on clearance rate in a variety of benthic invertebrates. In Book of Abstracts, The Xth International Conference on Harmful Algae, Florida: 87.

  • Guillard, R. R. L.& J. H. Ryther, 1962. Studies of marine planktonic diatoms. Canadian Journal of Microbiology 8: 229.

    Article  CAS  PubMed  Google Scholar 

  • Hallegraeff, G. M., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.

    Google Scholar 

  • Hallegraeff, G. M., J. P. Valentine, J. A. Marshall & C. J. Bolch, 1997. Temperature tolerances of toxic dinoflagellate cysts: application to the treatment of ships’ ballast water. Aquatic Ecology 31: 47–52.

    Article  CAS  Google Scholar 

  • Hill, W., 1996. Effects of light. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., California: 121–148.

    Google Scholar 

  • Hurst, J. W., R. Selvin, J. J. Sullivan, C. M. Yentch & R. R. L. Guillard, 1985. Intercomparison of various assay methods for the detection of shellfish toxins. In Anderson, D. M., A.W. White & D. G. Baden (eds), Toxic Dinoflagellates. Elsevier, New York: 427–432.

    Google Scholar 

  • Ichimi, K., M. Yamasaki, Y. Okumura & T. Suzuki, 2001. The growth and cyst formation of a toxic dinoflagellate, Alexandrium tamarense, at low water temperatures in northeastern Japan. Journal of Experimental Marine Biology and Ecology 261: 17–29.

    Article  PubMed  Google Scholar 

  • Kremp, A., 2001. Effects of cyst resuspension on germination and seeding of two bloom-forming dinoflagellates in the Baltic Sea. Marine Ecology Progress Series 216: 57–66.

    Google Scholar 

  • Kremp, A. & A. S. Heiskanen, 1999. Sexuality and cyst formation of the spring-bloom dinoflagellate Scrippsiella hangoei in the coastal northern Baltic Sea. Marine Biology 134: 771–777.

    Article  Google Scholar 

  • Lewis, J., 1991. Cyst-theca relationships in Scrippsiella (Dinophyceae) and related orthoperidinioid genera. Botanica Marina 34: 91–106.

    Article  Google Scholar 

  • Lewis, M. A., D. D. Dantin, C. C. Walker & R. M. Greene, 2002. Toxicological investigation of clay flocculation of Karenia brevis on estuarine benthic invertebrates and fish. In Book of Abstracts, The Xth International Conference on Harmful Algae, Florida: 169.

  • Lirdwitayaprasit, T., S. Nisho, S. Montani & T. Okaichi, 1990. The biochemical processes during cyst formation in Alexandrium catanella. In Graneli, E., L. Sundström, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier, New York: 294–299.

    Google Scholar 

  • Matsuoka, K. & Y. Fukuyo, 2000. Technical Guide for Modern Dinoflagellate Cyst Study. WESTPAC-HAB/WESTPAC/IOC, WESTPAC-HAB Office, Asian Natural Environmental Science Center, Tokyo, Japan: 6–12.

    Google Scholar 

  • Montresor, M., A. Zingone & D. Sarno, 1998. Dinoflagellate cyst production at a coastal Mediterranean site. Journal of Plankton Research 20: 2291–2312.

    Google Scholar 

  • Montresor, M., L. Nuzzo & M. G. Mazzocchi, 2003. Viability of dinoflagellate cysts after the passage through the copepod gut. Journal of Experimental Marine Biology and Ecology 287: 209–221.

    Article  Google Scholar 

  • Na, G., W. Choi & Y. Chun, 1996. A study on red tide control with Loess suspension. Journal of Aquaculture 9: 239–245.

    Google Scholar 

  • Nuzzo, L. & M. Montresor, 1999. Different encystment patterns in two calcareous cyst-producing species of the dinoflagellate genus Scrippsiella. Journal of Plankton Research 21: 2009–2018.

    Article  Google Scholar 

  • Park, Y. T. & W. J. Lee, 1998. Changes of bacterial population during the decomposition process of red tide dinoflagellate, Cochlodinium polykrikoides in the marine sediment addition of yellow loess. Journal of Korean Fishery Society 31: 920–926.

    Google Scholar 

  • Peterson, C. G., 1996. Response of benthic algal communities to natural physical disturbance. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., California: 375–402.

    Google Scholar 

  • Power, M. E., 1990. Resource enhancement by indirect effects of grazers: Armored catfish, algae and sediment. Ecology 71: 897–904.

    Google Scholar 

  • Qin, X. M. & J. Z. Zou, 1997. Study on the effects of N, P, Fe-EDTA,Mn on the growth of a red tide dinoflagellate Scrippsiella trochoidea. Oceanologia et Limnologia Sinica 28: 594–598 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Sengco, M. R., D. M. Anderson, R. H. Pierce, J. Culter & T. A. Villareal, 2002. The use of phosphatic clays to flocculate natural blooms of Karenia brevis in Florida and Texas. In Book of Abstracts, The Xth International Conference on Harmful Algae, Florida: 256.

  • Sengco, M. R., A. Li, K. Tugend, D. Kulis & D. M. Anderson, 2001. Removal of red-and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Marine Ecology Progress Series 210: 41–53.

    CAS  Google Scholar 

  • Shirota, A., 1989a. Red tide problem and countermeasures (1). International Journal of Aquatic and Fishery Technology 1: 25–38.

    Google Scholar 

  • Shirota, A., 1989b. Red tide problem and countermeasures (2). International Journal of Aquatic and Fishery Technology 1: 195–223.

    Google Scholar 

  • Shumway, S. E., 1990. A review of the effects of algal blooms on shellfish and aquaculture. Journal of World Aquaculture Society 21: 65–104.

    Google Scholar 

  • Shumway, S. E., S. M. Allen & P. D. Boersma, 2003. Marine birds and harmful algal blooms: sporadic victims or under-reported events? Harmful Algae 2: 1–17.

    Article  Google Scholar 

  • Shumway, S. E., S. Sherman-Caswell & J. W. Hurst, 1988. Paralytic shellfish poisoning in Maine: monitoring a monster. Journal of Shellfish Research 7: 643–652.

    Google Scholar 

  • Smayda, T., 1990. Novel and nuisance phytoplankton blooms in the sea, evidence for a global epidemic. In Granéli, E., B. Sundström, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier, New York: 29–40.

    Google Scholar 

  • Tsujino, M., T. Kamiyama, T. Uchida, M. Yamaguchi & S. Itakura, 2002. Abundance and germination capability of resting cysts of Alexandrium spp. (Dinophyceae) from faecal pellets of macrobenthic organisms. Journal of Experimental Marine Biology and Ecology 271: 1–7.

    Article  Google Scholar 

  • Turpin, D. H., P. E. R. Dobell & F. J. R. Taylor, 1978. Sexuality and cyst formation in pacific strains of the toxic dinoflagellate Gonyaulax tamarensis. Journal of Phycology 14: 235–238.

    Google Scholar 

  • Whang, J. Y., 2000. Characteristics and ingredient of loess in Korea. In Proceedings of the 3rd International Symposium on Harmful Algal Blooms & Control: the Evaluation on the Mitigation Capability of Clay and Yellow Loess at the Harmful Algal Blooms and Their Impacts on Marine Ecosystem. National Fisheries Research & Development Institute, Pusan, Korea: 28–33.

    Google Scholar 

  • White, A. W. & C. M. Lewis, 1982. Resting cysts of the toxic, red tide dinoflagellate Gonyaulax excavata in Bay of Fundy sediments. Canadian Journal of Fisheries and Aquatic Sciences 39: 1185–1194.

    Article  Google Scholar 

  • Yentsch, C. M. & F. C. Mague, 1979. Motile cells and cysts: two probable mechanisms of intoxication of shellfish in New England waters. In Taylor, D. L. & H. H. Seliger (eds), Toxic Dinoflagellate Blooms. Elsevier, North Holland: 127–130.

    Google Scholar 

  • Yu, Z. M. & D. V. Subba Rao, 1998. Impact of halloysite on growth of Pseudonitzschia pungens f. multiseries and production of algal toxin. Oceanologia et Limnologia Sinica 29: 47–52 (in Chinese with English abstract).

    Google Scholar 

  • Yu, Z. M., J. Z. Zou & X. N. Ma, 1994a. Application of clays to removal of red tide organisms I. Coagulation of red tide organisms with clays. Chinese Journal of Oceanology and Limnolology 12: 193–200.

    CAS  Google Scholar 

  • Yu, Z. M., J. Z. Zou & X. N. Ma, 1994b. Application of clays to removal of red tide organisms II. Coagulation of different species of red tide organisms with montmorillonite and effect of clay pretreatment. Chinese Journal of Oceanology and Limnolology 12: 316–324.

    Article  CAS  Google Scholar 

  • Yu, Z. M., J. Z. Zou & X. N. Ma, 1994c. A more effective clay for removing red tide organisms. Journal of Natural Disasters 3: 105–109 (in Chinese with English abstract).

    Google Scholar 

  • Yu, Z. M., J. Z. Zou & X. N. Ma, 1995. Application of clays to removal of red tide organisms III. The coagulation of kaolin on red tide organisms. Chinese Journal of Oceanology and Limnology 13: 62–70.

    CAS  Google Scholar 

  • Zingone, A. & H. O. Enevoldsen, 2000. The diversity of harmful algal blooms: a challenge for science and management. Ocean & Coastal Management 43: 725–748.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, XX., Choi, JK. Recovery and fate of three species of marine dinoflagellates after yellow clay flocculation. Hydrobiologia 519, 153–165 (2004). https://doi.org/10.1023/B:HYDR.0000026502.05971.bf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000026502.05971.bf

Navigation