Skip to main content
Log in

Phylogenetic analysis of complete 5′ external transcribed spacers of the 18S ribosomal RNA genes of diploid Aegilops and related species (Triticeae, Poaceae)

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

PCR systems were designed to amplify the entire 5′ external transcribed spacer (ETS) region of the 18S rRNA gene of all the diploid species of Aegilops and several other taxa closely related to domesticated wheat. Phylogenetic analysis was performed on the complete ETS sequences using the neighbor-joining, maximum parsimony, and maximum likelihood methods. Among the individual taxa studied, speciation in Secale is very recent. In the case of the A genome diploids, the results support the theory that the A genomes of wheat have experienced reticulate evolution owing to introgression. The B and G genomes of tetraploid domesticated wheats form a clade with Ae. speltoides in which the B genome diverged first and the G genome more recently. It was demonstrated that the complete ETS sequences of the Triticeae yield coherent phylogenetic information. The ETS is a useful tool for studying the phylogeny of closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhunov E.A., Chemeris A.V. and Vakhitov V.A. 1997. Uncommon motives of nucleotide sequence adjacent to the putative transcription initiation site in the rDNA intergenic spacer of diploid wheat Triticum urartu Thum. ex Gandil, T.beoticum Boiss L., and T. monococcum L. Russ. J. Genet. 33: 1365–1367.

    Google Scholar 

  • Appels R., Moran L.B. and Gustafson J.P. 1986. The structure of DNA from the rye (Secale cereale) NOR R1 locus and its behaviour in wheat backgrounds. Can. J. Genet. Cytol. 28: 673–685.

    Google Scholar 

  • Badaeva E.D., Friebe B. and Gill B.S. 1996. Genome differentiation in Aegilops. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39: 293–306.

    Google Scholar 

  • Baldwin B.G. and Markos S. 1998. Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Mol. Phylogen. Evol. 10: 449–463.

    Google Scholar 

  • Barker R.F., Harberd N.P., Jarvis M.G. and Flavell R.B. 1988. Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J. Mol. Biol. 201: 1–17.

    Google Scholar 

  • Barkworth M.E. 1992. Taxonomy of the Triticeae: A historical perspective. Hereditas 116: 1–14.

    Google Scholar 

  • Blake N.K., Lehfeldt B.R., Lavin M. and Talbert L.E. 1999. Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat. Genome 42: 351–360.

    Google Scholar 

  • Buckler E.S. and Holtsford T.P. 1996a. Zea ribosomal repeat evolution and substitution patterns. Mol. Biol. Evol. 13: 623–632.

    Google Scholar 

  • Buckler E.S. and Holtsford T.P. 1996b. Zea systematics: ribosomal ITS evidence. Mol. Biol. Evol. 13: 612–622.

    Google Scholar 

  • Buckler E.S., Ippolito A. and Holtsford T.P. 1997. The evolution of ribosomal DNA: paralogues and phylogenetic implications. Genetics 145: 821–832.

    Google Scholar 

  • Denduangboripant J. and Cronk Q.C.B. 2000. High intraindividual variation in internal transcribed spacer sequences in Aeschynan-thus (Gesneriaceae): Implications for phylogenetics. Proc. R. Soc. Lond. ser. B 267: 1407–1415.

    Google Scholar 

  • Dubcovsky J. and Dvorak J. 1995. Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140: 1367–1377.

    Google Scholar 

  • Dvorak J. and Zhang H.-B. 1990.Variation on repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc. Natl. Acad. Sci. 87: 9640–9644.

    Google Scholar 

  • Dvorak J. and Zhang H.-B. 1992a. Application of molecular tools for study of the phylogeny of diploid and polyploid taxa in Triticeae. Hereditas 116: 37–42.

    Google Scholar 

  • Dvorak J. and Zhang H.-B. 1992b. Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. Theor. Appl. Genet. 84: 419–429.

    Google Scholar 

  • Felsenstein J. 1997. PHYLIP – Phylogeny Inference Package. University of Washington, Seattle, (version 3.5c).

    Google Scholar 

  • Hall T.J. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95–98.

    Google Scholar 

  • Hsiao C., Chatterton N.J., Asay K.H. and Jensen K.B. 1995. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38: 211–223.

    Google Scholar 

  • Jiang J. and Gill B.S. 1994. Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosome Res. 2: 59–64.

    Google Scholar 

  • Kellogg E.A., Appels R. and Mason-gamer R.J. 1996. When genes tell different stories: the diploid genera of Triticeae (gramineae). System. Bot. 21: 321–347.

    Google Scholar 

  • Kerby K. and Kuspira J. 1987. The phylogeny of the polyploid wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat). Genome 29: 722–737.

    Google Scholar 

  • Khlestkina E.K. and Salina E.A. 2001. Genome-specific markers of tetraploid wheats and putative diploid progenitor species. Plant Breeding 120: 227–232.

    Google Scholar 

  • Kim N.-S., Kuspira J., Armstrong K. and Bhambhani R. 1993. Genetic and cytogenetic analyses of the A genome of Triticum monococcum. VIII. Localization of rDNAs and characterization of 5S rRNA genes. Genome 36: 77–86.

    Google Scholar 

  • Lassner M., Anderson O. and Dvorak J. 1986. Hypervariation associated with a 12-nucleotide direct repeat and inferences on intergenomic homogenization of ribosomal RNA gene spacers based on the DNA sequence of a clone from the wheat Nor-D 3 locus. Genome 29: 770–781.

    Google Scholar 

  • Linder C.R., Goertzen L.R., Heuvel B.V., Francisco-Ortega J. and Jansen R.K. 2000. The complete external transcribed spacer of 18S-26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Mol. Phylogen. Evol. 14: 285–303.

    Google Scholar 

  • Maestra B. and Naranjo T. 1998. Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theor. Appl. Genet. 97: 181–186.

    Google Scholar 

  • McIntyre C.L., Clarke B.C. and Appels R. 1988. DNA sequence analyses of the ribosomal spacer regions in the Triticeae. Plant Syst. Evol. 160: 91–104.

    Google Scholar 

  • Mori N., Miyashita N.T., Terachi T. and Nakamura C. 1997. Variation in coxII intron in the wild ancestral species of wheat. Hereditas 126: 281–288.

    Google Scholar 

  • Ohta S. 1991. Phylogenetic relationships of Aegilops mutica Boiss. with the diploid species of congeneric Aegilops-Triticum complex, based on the new method of genome analysis using its B-chromosomes. Mem. Coll. Agric. Kyoto Univ. 137: 1–116.

    Google Scholar 

  • Petersen G. and Seberg O. 1997. Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol. Phylogen. Evol. 7: 217–230.

    Google Scholar 

  • Qualset C.O., Zhong G.-Y., De Pace C. and Mcguire P.E. 1993. Population biology and genetic resources of Dasypyrum vil losum. In: Damania A.B. (ed.), Biodiversity and Wheat Improve ment. John Wiley, Chichester, pp. 227–233.

    Google Scholar 

  • Rieseberg L.H., Whitton J. and Linder C.R. 1996. Molecular marker incongruence in plant hybrid zones and phylogenetic trees. Acta Bot. Neerland. 45: 243–262.

    Google Scholar 

  • Riley R., Kimber G. and Chapman V. 1961. Origin of genetic control of diploid-like behaviour of polyploid wheat. J. Hered. 52: 22–25.

    Google Scholar 

  • Rodriguez S., Maestra B., Perera E., Dýez M. and Naranjo T. 2000. Pairing affinities of the B-and G-genome chromosomes of polyploid wheats with those of Aegilops speltoides. Genome 43: 814–819.

    Google Scholar 

  • Sallares R., Allaby R.G. and Brown T.A. 1995. PCR-based identification of wheat genomes. Mol. Ecol. 4: 509–514.

    Google Scholar 

  • Sallares R. and Brown T.A. 1999. PCR-based analysis of the intergenic spacers of the Nor loci on the A genomes of Triticum diploids and polyploids. Genome 42: 116–128.

    Google Scholar 

  • Sanderson M.J. and Doyle J.J. 1992. Reconstruction of organismal and gene phylogenies from data on multigene families: concerted evolution, homoplasy, and confidence. System. Biol. 41: 4–17.

    Google Scholar 

  • Sasanuma T., Miyashita N.T. and Tsunewaki K. 1996. Wheat phylogeny determined by RFLP analysis of nuclear DNA. Intra-and interspecific variations of five Aegilops Sitopsis species. Theor. Appl. Genet. 92: 928–934.

    Google Scholar 

  • Singh R.J. and Robbelen G. 1977. Identification by Giemsa technique of the translocations separating cultivated rye from three wild species of Secale. Chromosoma 59: 217–225.

    Google Scholar 

  • Thiellement H., Seguin M., Bahrman N. and Zivy M. 1989. Homoeology and phylogeny of the A, S, and D genomes of the Triticinae. J. Mol. Evol. 29: 89–94.

    Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. and Higgins D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24: 4876–4882.

    Google Scholar 

  • Tremousaygue D., Laudie M., Grellet F. and Delseny M. 1992. The Brassica oleracea rDNA spacer revisited. Plant Mol. Biol. 18: 1013–1018.

    Google Scholar 

  • Vakhitov V.A., Chemeris A.V. and Akhmetzyanov A.A. 1989. Nucleotide sequence of intergenic and external transcribed spacers of rDNA of diploid wheat Triticum urartu Thum. ex Gandil. Molek. Biol. 23: 441–448.

    Google Scholar 

  • Van de Peer Y. and DeWachter R. 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comp. Appl. Biosci. 10: 569–570.

    Google Scholar 

  • von Buren M. 2001. Polymorphisms in two homeologous g-gliadin genes and the evolution of cultivated wheat. Genet. Resour. Crop Evol. 48: 205–220.

    Google Scholar 

  • van Slageren M. 1993. Taxonomy and distribution of Aegilops. In: Damania A.B. (ed.), Biodiversity and Wheat Improvement. John Wiley, Chichester, pp. 67–79.

    Google Scholar 

  • Waines J.G. and Barnhart D. 1992. Biosystematic research in Aegilops and Triticum. Hereditas 116: 207–212.

    Google Scholar 

  • Wang J-B.,Wang C., Shi S-H. and Zhong Y. 2000. ITS regions in diploids of Aegilops (Poaceae) and their phylogenetic implications. Hereditas 132: 209–213.

    Google Scholar 

  • Wendel J.F., Schnabel A. and Seelanan T. 1995. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phylogen. Evol. 4: 298–313.

    Google Scholar 

  • Xia X. and Xie Z. 2001. DAMBE: Data analysis in molecular biology and evolution. J. Hered. 92: 371–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sallares, R., Brown, T.A. Phylogenetic analysis of complete 5′ external transcribed spacers of the 18S ribosomal RNA genes of diploid Aegilops and related species (Triticeae, Poaceae). Genetic Resources and Crop Evolution 51, 701–712 (2004). https://doi.org/10.1023/B:GRES.0000034576.34036.a1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GRES.0000034576.34036.a1

Navigation