Skip to main content
Log in

Phylogenetic relationships among Elymus and related diploid genera (Triticeae: Poaceae) based on nuclear rDNA ITS sequences

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

To investigate the phylogenetic relationships among Elymus and related diploid genera, the genome donor of Elymus, and the evolutionary history of polyploid Elymus species, nuclear ribosomal internal transcribed spacer (ITS) sequences were analyzed for 10 Elymus species, together with 17 diploid taxa from 5 monogenomic genera. The phylogenetic analyses (Neighbor-Joining) supported two major clades (St and H). Sequence diversity and genealogical analysis suggested that (1) Elymus species were unambiguously closely related to Pseudoroegeria; (2) Pse. stipifolia might be serve as the St genome donor of polyploid Elymus species; (3) the Y genome might be originated from ancestral lineage of Pseudoroegneria (St); (4) the ITS sequences of Elymus were evolutionarily distinct and may clarify parental lineages and phylogenetic relationships in Elymus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainouche M.L. & Bayer R.J. 1997. On the origins of the tetraploid Bromus species (section Bromus, Poaceae): insights from the internal transcribed spacer sequences of nuclear ribosomal DNA. Genome 40: 730–743.

    Article  CAS  Google Scholar 

  • Bailey C.D., Carr T.G., Harris S.A. & Hughes C.E. 2003. Characterization of Angiosperm nrDNA Polymorphism, Paralogy, and Pseudogenes. Mol. Phylogenet. Evol. 29: 435–455.

    Article  CAS  Google Scholar 

  • Baldwin B.G., Sanderson M.J., Porter J.M., Wojciechowski M.F., Campbell C.S. & Donoghue M.J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247–277.

    Article  Google Scholar 

  • Buckler E.S., Ippolito A. & Holtsford T.P. 1997. The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. Genetics 145: 821–832.

    CAS  PubMed  Google Scholar 

  • Dewey D.R. 1967. Synthetic hybrids of Agropyron scribneri × Elymus juncea. Bulletin of the Torrey Botanical Club 94: 388–395.

    Article  Google Scholar 

  • Dewey D.R. 1971. Synthetic hybrids of Hordeum bogdanii with Elymus canadensis and Sitanion hystrix. Am. J. Bot. 58: 902–908.

    Article  Google Scholar 

  • Dewey D.R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae, pp. 209–279. In: Gustafsen J.P. (ed.), Gene Manipulation in Plant Improvement Plenum Press, New York, NY, USA.

  • Doyle J.J. & Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Fu Y.X. & Li W.H. 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge S., Sang T., Lu B.R. & Hong D.Y., 1999. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc. Natl. Acad. Sci. USA. 96: 1440-1440.

  • Franzke A. & Mummenhoff K., 1999. Recent hybrid speciation in Cardamine (Brassicaceae) conversion of nuclear ribosomal ITS sequences in statu nascendi. Theor. Appl. Genet. 98: 831–834.

    Article  CAS  Google Scholar 

  • Hao G., Yuan Y.M., Hu C.M., Ge X.J. & Zhao N.X. 2004. Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast trnL-F and nuclear ribosomal ITS sequences. Mol. Phylogenet. Evol. 31: 323–339.

    Article  CAS  Google Scholar 

  • Hershkovitz M.A., Zimmer E.A. & Hahn W.J. 1999. Ribosomal DNA sequences and angiosperm systematic, pp. 268–326. In: Hollingsworth P.M., Bateman R.M. & Gornall R.J., (eds), Molecular Systematics and Plant Evolution, Taylor & Francis, London, UK

  • Hudson R.R. 1990. Gene genealogies and the coalescent process pp. 1–44. In: Futuyma D. & Antonovics J. (eds), In Oxford Surveys in Evolutionary Biology, Oxford University Press, New York.

  • Jensen K.B. 1990. Cytology and taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus and E. batalinii (Triticeae: Poaceae). Genome 33: 668–673.

    Article  Google Scholar 

  • Koch M.A. & Al-Shehbaz I.A. 2000. Molecular systematicsof the Chinese Yinshania (Brassicaceae): Evidence from plastid trnL intron and nuclear ITS DNA SequenceData. Ann. Missouri Bot. Gard. 8: 246–272.

    Article  Google Scholar 

  • Koch M.A., Dobes C. & Mitchell-Olds T. 2003. Multiple hybrid formation in natural populations: Concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North AmericanArabis divaricarpa (Brassicaceae). Mol. Bio. Evol. 20: 338–350.

    Article  CAS  Google Scholar 

  • Liu Q.L., Ge S. & Tang H.B. 2006. Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences, New Phyto. 170: 411–420.

    Article  CAS  Google Scholar 

  • L¨ove A. 1984. Conspectus of the Triticeae. Feddes Repertor. 95: 425–521.

    Google Scholar 

  • Lu B.R. & Salomon B. 1992. Differentiation of the SY genomes in Asiatic Elymus. Hereditas 116: 121–126.

    Article  Google Scholar 

  • Lu B.R. 1993. Genomic relationships within theElymus parviglumis group (Triticeae: Poaceae). Plant Syst. Evol. 187: 191–211.

    Article  Google Scholar 

  • Mason-Gamer R.J. 2001. Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Syst. Bot. 26: 757–768.

    Google Scholar 

  • Mason-Gamer R.J. 2004. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst. Biol. 53: 25–37.

    Article  Google Scholar 

  • Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264: 421–424.

    Article  CAS  Google Scholar 

  • Nei M. & Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76: 5269–5273.

    Article  CAS  Google Scholar 

  • Popp M. & Oxelman B. 2001. Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Mol. Phylogenet. Evol. 20: 474–481.

    Article  CAS  Google Scholar 

  • Rauscher J.T., Doyle J.J. & Brown A.H. 2004. Multiple origins and nrDNA internal transcribed spacer homoeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics 166: 987–998.

    Article  CAS  Google Scholar 

  • Rozas J., Sánchez-DelBarrio J.C., Messegue, X. & Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.

    Article  CAS  Google Scholar 

  • Soltis D.E., Soltis P.S. & Tate J.A., 2003. Advances in the study of polyploidy since plant speciation. New Phytol. 161: 173–191.

    Article  Google Scholar 

  • Soltis P.S. & Soltis D.E. 2000. The role of genetics and genomic attributes in the success of polyploids. Proc.Natl. Acad. Sci. USA. 97: 7051–7057.

    Article  CAS  Google Scholar 

  • Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London.

    Google Scholar 

  • Tajima F. 1989. Statistical method for testing the neutral mutationof hypothesis by DNA polymorphism. Genetics 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Moleculare volutionary genetics analysis using maximum likelihood, evolutionary distance, and maximumparsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  CAS  Google Scholar 

  • Thompson J.D., Higgins D.G. & Gibson T.J., 1994. CLUSTAL W: improving thesensitivity of progressive multiple sequence alignment through sequenceweighting positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  CAS  Google Scholar 

  • Torabinejad J. & Mueller R.J. 1993. Genome constitution of the Australian hexaploid grass, Elymus scabrus (Poaceae: Triticeae). Genome 36: 147–151.

    Article  CAS  Google Scholar 

  • Watterson G.A. 1975. On the number of segregation sites in genetic models without ecombination. Theor. Popul. Biol. 7: 256–276.

    Article  CAS  Google Scholar 

  • Wendel J.F., Schnabel A. & Seelanan T. 1995. Bi-directional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA. 92: 280–284.

    Article  CAS  Google Scholar 

  • Wendel J.F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42: 225–249.

    Article  CAS  Google Scholar 

  • Yonemori K., Honsho C., Kanzakis E.W. & Sugiura A. 2002. Phylogenetic relationships of Mangifera species revealed by ITS sequences of nuclear ribosomal DNA and a possibility of their hybrid origin. Plant Syst. Evol. 231: 59–75.

    Article  CAS  Google Scholar 

  • Zhang H.Q., Fan X. & Sha L.N., 2007. Phylogeny of Hystrix and related genera (Poaceae: Triticeae) based on nuclear rDNA ITS sequences. Plant Biol. 10: 635–642.

    Article  Google Scholar 

  • Zhang W., Qu L.J., Gu H., Gao W., Liu M., Chen J. & Chen Z. 2002. Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor. Appl. Genet. 104: 1099–1106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31270243). We would like to specially thank the American National Plant Germplasm System for providing some of the seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-wu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Deng, Jb., Gou, Xm. et al. Phylogenetic relationships among Elymus and related diploid genera (Triticeae: Poaceae) based on nuclear rDNA ITS sequences. Biologia 70, 183–189 (2015). https://doi.org/10.1515/biolog-2015-0019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0019

Key words

Navigation