Skip to main content
Log in

Synthesis of Silica Gels and Organic-Inorganic Hybrids on Their Base

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The main regularities of the synthesis of monolithic SiO2 gels (nonfractured upon drying) are considered briefly. Most attention is focused on the xerogels prepared through hydrolysis and polycondensation of silicon alkoxides. The synthesis and structure of organic-inorganic hybrids are outlined using recent data available in the literature. The main fields of application of the materials prepared on their base are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Eitel, W., The Physical Chemistry of the Silicates, Chicago: Univ. of Chicago Press, 1954. Translated under the title Fizicheskaya khimiya silikatov, Moscow: Inostrannaya Literatura, 1962.

    Google Scholar 

  2. Eitel, W., Silicates Science, New York: Academic, 1964, vol. 1; ibid., 1966, vol. 4.

    Google Scholar 

  3. Iler, R.K., The Colloid Chemistry of Silica and Silicates, Ithaca: Cornell Univ. Press, 1955. Translated under the title Kolloidnaya khimiya kremnezema i silikatov, Moscow: Gosstroiizdat, 1959.

    Google Scholar 

  4. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, New York: Wiley, 1979.

    Google Scholar 

  5. Hinz, W., Silikate: Grundlagen der Silikatwissenschaft und Silikattechnik: Kolloide, Berlin: Bauwesen, 1971, vol. 2.

    Google Scholar 

  6. The Colloid Chemistry of Silica, Bergna, H.E., Ed., Washington: Am. Chem. Soc., 1994.

  7. Andrianov, K.A., Kremneorganicheskie soedineniya (Organosilicon Compounds), Moscow: Goskhimizdat, 1955.

    Google Scholar 

  8. Voronkov, M.G., Mileshkevich, V.P., and Yuzhelevskii, Yu.A., Siloksanovaya svyaz' (The Siloxane Bonding), Novosibirsk: Nauka, 1976.

    Google Scholar 

  9. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, San Diego: Academic, 1990.

    Google Scholar 

  10. Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specially Shapes, Klein, L.C., Ed., Park Ridge: Noyes, 1988.

  11. Petrovskii, G.T., Shashkin, V.S., and Yakhkind, A.K., The Sol-Gel Synthesis of Optical Vitreous Materials from Colloidal Silicas: Basic Methods and Prospects for Applications, Fiz. Khim. Stekla, 1997, vol. 23, no. 1, pp. 43-54 [Glass Phys. Chem. (Engl. transl.), 1997, vol.23, no. 1, pp. 27-35].

    Google Scholar 

  12. Sakka, S., The Current State of Sol-Gel Technology, J.Sol-Gel Sci. Technol., 1994, vol. 3, pp. 69-81.

    Google Scholar 

  13. Blanco, E., Esquivias, L., Litran, R., Pinero, M., Ramirez-del-Solar, M., and De La Rosa-Fox, N., Sono-gels and Derived Materials, Appl. Organomet. Chem., 1999, vol. 13, pp. 399-418.

    Google Scholar 

  14. Bisson, A., Rigacci, A., Lecomte, D., Rodier, E., and Achard, P., Drying of Silica Gels to Obtain Aerogels: Phenomenology and Basic Techniques, Drying Technol., 2003, vol. 21, no. 4, pp. 593-628.

    Google Scholar 

  15. Wojcik, A.B. and Klein, L.C., Transparent Organic/Inorganic Hybrid Gels: A Classification Scheme, Appl. Organomet. Chem., 1997, vol. 11, pp. 129-135.

    Google Scholar 

  16. Pomogailo, A.D., Hybrid Polymeric-Inorganic Composites, Usp. Khim., 2000, vol. 69, pp. 60-88.

    Google Scholar 

  17. Ur'ev, N.B., Vysokokontsentrirovannye dispersnye sistemy (Highly Concentrated Dispersion Systems), Moscow: Khimiya, 1980.

    Google Scholar 

  18. Walsh, R.J., Process for Producing Hollow Spheres of Silica, US Patent 3161468, 1961.

  19. Potter, C. et al., Method of Forming Quartz Fibers from Extruded Rods,US Patent 3177057, 1965.

  20. Gorelova, G.T., Evstrop'ev, S.K., Efremov, A.M., Konovalov, A.V., Petrovskii, G.T., Semenov, A.D., and Shashkin, V.S., Inorganic Sol-Gel Synthesis of Mono-lithic Silica Glasses with the Use of Aerosils, Fiz. Khim. Stekla, 1999, vol. 25, no. 3, pp. 363-372 [Glass Phys. Chem. (Engl. transl.), 1999, vol. 25, no. 3, pp. 274-280].

    Google Scholar 

  21. Khimich, N.N., On the Problem of Drying of a Monolithic Silica Gel, Fiz. Khim. Stekla, 2004, vol. 30, no. 1, pp. 146-148 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 1, pp. 107-108].

    Google Scholar 

  22. Carey, F.A. and Sundberg, R.J., Advanced Organic Chemistry. Part A: Structure and Mechanisms, New York: Plenum, 1977. Translated under the title Uglublennyi kurs organicheskoi khimii, Moscow: Khimiya, 1981, vol. 1.

    Google Scholar 

  23. Obshchaya organicheskaya khimiya (Comprehensive Organic Chemistry), Kochetkov, N.K., Ed., Moscow: Khimiya, 1984, vol. 6.

  24. Sutapa Roy and Dibuendi Ganguli, Optical Properties of Ni-Doped Silica and Silicate Gel Monoliths J. Non-Cryst. Solids, 1992, vol. 151, no. 3, pp. 203-208.

    Google Scholar 

  25. Thomas, L.M., Payen, S.A., and Wilke, G.D., Optical Properties and Laser Demonstration of Nd-Doped Sol-Gel Silica Glasses, J. Non-Cryst. Solids, 1992, vol. 151, no. 3, pp. 183-194.

    Google Scholar 

  26. Hutter, F., Kamiya, K., Matsuoka, M., and Yoko, T., ESP Study of Sol-Gel Derived Amorphous Fe 2 O 3-SiO 2 System, J. Non-Cryst. Solids, 1987, vol. 94, nos. 1-2, pp. 365-373.

    Google Scholar 

  27. Scherer, G.W. and Luong, J.C., Glass from Colloids, J.Non-Cryst. Solids, 1984, vol. 63, nos. 1-2, pp. 163-172.

    Google Scholar 

  28. Mehrotra, R.C., Synthesis and Reactions of Metal Alkoxides, J. Non-Cryst. Solids, 1988, vol. 100, no. 1, pp. 1-15.

    Google Scholar 

  29. Guglielmi, M. and Carturan, G., Precursors for Sol-Gel Preparations, J. Non-Cryst. Solids, 1988, vol. 100, no. 1, pp. 16-30.

    Google Scholar 

  30. Takamura, N., Gunji, T., Hatano, H., and Abe, Y., Preparation and Properties of Polysilsesquoxanes: Polysilsesquoxanes and Flexible Thin Films by Acid-Catalyzed Controlled Hydrolytic Polycondensation of Methyl-and Vinyltrimethoxysilane, J. Polym. Sci., Part. A: Polym. Chem., 1999, vol. 37, pp. 1017-1026.

    Google Scholar 

  31. Hasegawa, I., Nakane, Y., and Takayama, T., Siloxane Network Formation from the Si 8 Silicate Species and Dimethyldichlorosilane, Appl. Organomet. Chem., 1999, vol. 13, pp. 273-277.

    Google Scholar 

  32. Innocenzi, P., Abdirashid, M.O., and Guglielmi, M., Structure and Properties of Sol-Gel Coatings from Methyltriethoxysilane and Tetraethoxysilane, J. Sol-Gel Sci. Technol., 1994, vol. 3, pp. 47-55.

    Google Scholar 

  33. Kim, G.-D., Lee, D.-A., Moon, J.-W., Kim, J.-D., and Park, J.A., Synthesis and Applications of TEOS/PDMS Hybrid Material by Sol-Gel Process, Appl. Organomet. Chem., 1999, vol. 13, pp. 361-372.

    Google Scholar 

  34. Deng, Q., Moore, R.B., and Mauritz, K.A., Nafion ® / (SiO 2, ORMOSIL, and Dimethylsiloxane) Hybrids via in situ Sol-Gel Reactions: Characterization of Fundamental Properties, J. Appl. Polym. Sci., 1998, vol. 68, pp. 747-763.

    Google Scholar 

  35. Wynne, K.J., Ho, T., Johnston, E.E., and Myers, S.A., Surface Science and Stability of Networks Prepared from Hydroxy-Terminated Polydimethylsiloxane and Methyltriethoxysilane, Appl. Organomet. Chem., 1998, vol. 12, pp. 763-770.

    Google Scholar 

  36. Park, O.-H., Pinot, J., and Bae, B.-S., Photoluminescence of Sol-Gel Hybrid Films Doped with Erbium Tris (8-Hydroxyqunoline), Abstracts of Papers, XII Interna-tional Workshop on Sol-Gel Science and Technology, Sydney, 2003, p. 342.

  37. Pirson, A., Monsine, A., Marchot, P., Michaux, B., van Cantfort, O., Pirard, J.P., and Lecloux, A.J., Synthesis of SiO 2-TiO 2 Xerogels by Sol-Gel Process, J. Sol-Gel Sci. Technol., 1995, vol. 4, pp. 179-185.

    Google Scholar 

  38. Huang, Z.H., Dong, J.H., Qiu, Y.K., and Wei, Y., New Hybrid Materials Incorporating Tetrabutyl Titanate and Tetraethoxysilane with Functional SEBS Elastomer via O 20 8-the Sol-Gel Process: Synthesis and Characterization, J.Appl. Polym. Sci., 1997, vol. 66, pp. 853-860.

    Google Scholar 

  39. Breiner, J.M., Mark, J.E., and Beaucage, G., Dependence of Silica Particle Sizes on Network Chain Lengths, Silica Contents, and Catalyst Concentrations in in situ-Reinforced Polysiloxane Elastomers, J.Polym.Sci., Part B: Polym. Phys., 1999, vol. 37, pp. 1421-1427.

    Google Scholar 

  40. Kamiya, K., Oka, A., Nasu, H., and Hashimoto, T., Comparative Study of Structure of Silica Gels from Dif-ferent Sources, J. Sol-Gel Sci. Technol., 2000, vol. 19, nos. 1-3, pp. 495-499.

    Google Scholar 

  41. Khaskin, I.G., Application of Deuterium and Heavy Oxygen in Silicon Chemistry, Dokl. Akad. Nauk SSSR, 1952, vol. 85, pp. 129-132.

    Google Scholar 

  42. Pohl, E.R. and Osterholtz, F.D., Molecular Characterization of Composite Interface, Ishida, H. and Cumar,G., Eds., New York: Plenum, 1985, p. 157.

    Google Scholar 

  43. Aelion, R., Loebel, A., and Eirich, F., Hydrolysis of Ethyl Silicate, J. Am. Chem. Soc., 1950, vol. 72, pp.5705-5712.

    Google Scholar 

  44. Artaki, I., Bradley, M., Zerda, T.W., and Jonas, J., NMR and Raman Study of the Hydrolysis Reaction in Sol-Gel Processes, J. Phys. Chem., 1985, vol. 89, pp. 4399-4404.

    Google Scholar 

  45. Morrison, R.T. and Boyd, R.N., Organic Chemistry, Boston: Allyn and Bacon, 1970, 2nd ed. Translated under the title Organicheskaya khimiya, Moscow: Mir, 1974.

    Google Scholar 

  46. Kirkbir, F., Murate, H., Meyers, D., Chaudhuri, R., and Sarkar, A., Parametric Study of Strength of Silica Gels, J. Non-Cryst. Solids, 1994, vol. 178, nos. 1-3, pp. 284-292.

    Google Scholar 

  47. Chen, K.C., Tsuchiya, T., and Mackenzie, J.D., Sol-Gel Processing of Silica, J. Non-Cryst. Solids, 1986, vol. 81, nos. 1-3, pp. 227-237.

    Google Scholar 

  48. Curran, M.D. and Stiegman, A.E., Morphology and Pore Structure of Silica Xerogels Made at Low pH, J.Non-Cryst. Solids, 1999, vol. 249, no. 1, pp. 62-68.

    Google Scholar 

  49. Kolby, M.W., Osaka, A., and Mackenzie, J.D., Temperature Dependence of the Gelation of Silicon Alkoxides, J. Non-Cryst. Solids, 1988, vol. 99, no. 1, pp. 129-139.

    Google Scholar 

  50. Kolby, M.W., Osaka, A., and Mackenzie, J.D., Effects of Temperature on Formation of Silica Gel, J. Non-Cryst.Solids, 1986, vol. 82, nos. 1-3, pp. 37-41.

    Google Scholar 

  51. Pope, E.J.A. and Mackenzie, J.D., Sol-Gel Processing of Silica: II. The Rope of the Catalyst, J. Non-Cryst.Solids, 1986, vol. 87, nos. 1-2, pp. 185-194.

    Google Scholar 

  52. Huang, W.L., Liang, K.M., and Gu, S.R., Effect of HCl in a Two-Step Sol-Gel Process Using TEOS, J. Non-Cryst.Solids, 1999, vol. 258, nos. 1-3, pp. 234-238.

    Google Scholar 

  53. Kaufman, V.R. and Avnir, D., Water Consumption during the Early Stages of the Sol-Gel Tetramethylortho-silicate Polymerization as Probed by Excited State Proton Transfer, J. Non-Cryst. Solids, 1988, vol. 99, nos. 2-3, pp. 379-386.

    Google Scholar 

  54. Khimich, N.N. and Stolyar, S.V., Influence of the Acidity of the Medium on the Sol-Gel Formation of a Monolithic Silicon Gel from Tetramethoxysilane, Zh. Prikl. Khim. (St. Petersburg), 1998, vol. 71, no. 10, pp. 1590-1595

    Google Scholar 

  55. Brinker, C.J., Keefer, K.D., Schaefer, D.W., Assink,R.A., Kay, B.D., and Ashley, C.S., Sol-Gel Transition in Simple Silicates: II, J. Non-Cryst. Solids, 1984, vol. 63, no. 1, pp. 45-59.

    Google Scholar 

  56. Brinker, C.J., Keefer, K.D., Schaefer, D.W., and Ashley, C.S., Sol-Gel Transition in Simple Silicates, J.Non-Cryst. Solids, 1982, vol. 48, pp. 47-64.

    Google Scholar 

  57. Hench, L.L., Orcel, G., and Nogues, J.L., in Better Ceramics through Chemistry: II, Brinker, C.J., Clark,D.E., and Ulrich, D.R., Eds., Pittsburgh: Mat. Res. Soc., 1986, p. 35.

    Google Scholar 

  58. Alie, C., Pirard, R., Lecloux, A.J., and Pirard, J.-P., The Use of Additives to Prepare Low-Density Xerogels, J.Non-Cryst. Solids, 2001, vol. 285, pp. 135-141.

    Google Scholar 

  59. Rao, A.P. and Rao, A.V., Study of the Influence of Drying Control Chemical Additives on the Physical and Optical Properties of Nanocrystalline Cadmium Sulfide-Doped Tetraethylorthosilicate Silica Xerogels, J.Mater. Synth. Process, 2002, vol. 10, no. 1, pp. 7-16.

    Google Scholar 

  60. Khimich, N.N., Venzel', B.I., Drozdova, I.A., and Suslova, L.Ya., Trifluoroacetic Acid-A New Efficient Catalyst of the Organic Sol-Gel Process, Dokl. Akad.Nauk, 1999, vol. 366, no. 3, pp. 361-363.

    Google Scholar 

  61. Kamiya, K., Iwamoto, Y., Yoko, T., and Sakka, S., Hydrolysis and Condensation Reactions of Si(OC 2 H 5 ) 4 Related to Silica Fiber Drawing, J. Non-Cryst. Solids, 1988, vol. 100, nos. 1-3, pp. 195-200.

    Google Scholar 

  62. Sakka, S., Kamiya, K., and Makita, K., Formation of Sheets and Coating Films from Alkoxide Solutions, J.Non-Cryst. Solids, 1984, vol. 63, pp. 223-235.

    Google Scholar 

  63. Sakka, S. and Kamiya, K., The Sol-Gel Transition in the Hydrolysis of Metal Alkoxides in Relation to the Formation of Class Fibers and Films, J. Non-Cryst. Solids, 1982, vol. 48, pp. 31-46.

    Google Scholar 

  64. Aelion, R., Loebel, A., and Eirich, F., The Hydrolysis and Polycondensation of Tetra Alkoxysilanes, Res.Trav. Chim., 1950, vol. 69, pp. 61-75.

    Google Scholar 

  65. Klein, L.C., Sol-Gel Processing of Silicates, Annu. Rev.Mater. Sci., 1985, vol. 15, pp. 227-248.

    Google Scholar 

  66. Jada, S.S., Study of Tetraethyl Orthosilicate Hydrolysis by in situ Generation of Water, J. Am. Ceram. Soc., 1987, vol. 70, no. 11, pp. 298-300.

    Google Scholar 

  67. Munoz-Aguado, M.J., Gregorkiewitz, M., and Larbot, A., Sol-Gel Synthesis of the Binary Oxide (Zr,Ti)O 2 from the Alkoxides and Acetic Acid in Alcoholic Medium, Mat. Res. Bull., 1992, vol. 27, pp. 87-97.

    Google Scholar 

  68. Andrianov, K.A., Sokolov, N.N., and Khrustaleva, E.N., On the Formation of Polyorganosiloxanes by Heterofunctional Condensation, Zh. Obshch. Khim., 1956, vol.26, pp. 1102-1107.

    Google Scholar 

  69. Leznov, N.S., Sabun, L.A., and Andrianov, K.A., Polydiethylsiloxane Liquids: III. Action of Carboxylic Acids on Diethylethoxysilane, Zh. Obshch. Khim., 1959, vol.29, no. 5, pp. 1508-1515.

    Google Scholar 

  70. Leznov, N.S., Sabun, L.A., and Andrianov, K.A., Polydiethylsiloxane Liquids: V. On the Mechanism of Reaction of Diethoxysilane with Acetic Acid, Zh. Obshch.Khim., 1959, vol. 29, no. 5, pp. 1518-1522.

    Google Scholar 

  71. Stathatos, E., Lianos, P., Lavrencic-Stangar, U., and Orel, B., A High-Performance Solid-State Dye-Sensitzed Photoelectrochemical Cell Employing a Nano-composite Gel Electrolyte Made by the Sol-Gel Route, Adv. Mater., 2002, vol. 14, no. 5, pp. 354-357.

    Google Scholar 

  72. Bekiari, V. and Lianos, P., Characterization of Photoluminescence from a Material Made by Interaction of (3-Aminopropyl)triethoxysilane with Acetic Acid, Lang-muir, 1998, vol. 14, no. 13, pp. 3459-3461.

    Google Scholar 

  73. Brankova, T., Bekiari, V., and Lianos, P., Photoluminescence from Sol-Gel Organic-Inorganic Hybrid through Carboxylic Acid Solvolysis, Chem. Mater., 2003, vol.15, pp. 1855-1859.

    Google Scholar 

  74. Khimich, N.N., Venzel', B.I., and Koptelova, L.A., Preparation of a Monolithic Silicon Gel in an Anhydrous Medium, Dokl. Akad. Nauk, 2002, vol. 385, no. 6, pp. 790-792.

    Google Scholar 

  75. Sharp, K.G., A Two-Component, Non-Aqueous Route to Silica Gel, J. Sol-Gel Sci. Technol., 1994, vol. 2, pp.35-41.

    Google Scholar 

  76. Vioux, A., Non-Hydrolytic Sol-Gel Route to Mixed and Organic-Inorganic Hybrid Materials, Abstracts of Papers, XI International Workshop on Glasses, Ceramics, Hybrids, and Nanocomposites from Gels, Aband Terme, 2001, pp. 4-5.

  77. Hay, J.N., Porter, D., and Raval, H.M., A Versatile Route to Organically-Modified Silicas and Porous Silicas via the Non-Hydrolytic Sol-Gel Process, J. Mater.Chem., 2000, vol. 10, no. 8, pp. 1811-1818.

    Google Scholar 

  78. Kim, D.S., Kroke, E., Riedel, R., Gabriel, A.O., and Shim, S.C., An Anhydrous Sol-Gel System Derived from Methyldichlorosilane, Appl. Organomet. Chem., 1999, vol. 13, pp. 495-499.

    Google Scholar 

  79. Corriu, R.J.P., Le Clercq, D., Vioux, A., Pauthe, M., and Phalippou, J., Ultrastructure Processing of Advanced Ceramics, Mackenzie, J.D. and Ulrich, D.R., Eds., New York: Wiley, 1988, pp. 113-126.

    Google Scholar 

  80. Winter, R., Chan, J.-B., Frattini, R., and Jonas, J., The Effect of Fluoride on Sol-Gel Process, J. Non-Cryst. Solids, 1988, vol. 105, pp. 214-222.

    Google Scholar 

  81. Khimich, N.N., Zvyagil'skaya, Yu.V., Zhukov, A.N., and Us'yarov, O.G., Sol-Gel Synthesis of Dispersed SiO 2 Nanoparticles in the Presence of Organic Amines, Zh. Prikl. Khim. (St. Petersburg), 2003, vol. 76, no. 6, pp. 904-908.

    Google Scholar 

  82. Khimich, N.N., Koptelova, L.A., Doronina, L.A., and Drozdova, I.A., Synthesis of a Monolithic Silica Gel in a Alkaline Medium, Zh. Prikl. Khim. (St. Petersburg), 2003, vol. 76, no. 12, pp. 1956-1960.

    Google Scholar 

  83. Niznansky, D. and Rehspringer, J.L., Infrared Study of SiO 2 Sol to Gel Evolution and Gel Aging, J. Non-Cryst. Solids, 1995, vol. 180, pp. 191-196.

    Google Scholar 

  84. Kim, J.-H., Kim, H.-R., Park, H.-H., and Hyun, S.-H., Aging Effect of SiO 2 Xerogel Film on Its Microstruc-ture and Dielectric Properties, Appl. Surf. Sci., 2001, vols. 169-170, pp. 452-456.

    Google Scholar 

  85. Einarsrud, M.-A., Nilsen, E., Rigacci, A., Pajonk, G.M., Buathier, S., Valette, D., Durant, M., Chevalier, B., Nitz,P., and Ehrburger-Dolle, F., Strengthening of Silica Gels and Aerogels by Washing and Aging Processes, J. Non-Cryst. Solids, 2001, vol. 285, no. 1, pp. 1-7.

    Google Scholar 

  86. Scherer, G.W., Drying of Gels, J. Non-Cryst. Solids, 1986, vol. 87, nos. 1-2, pp. 1-47

    Google Scholar 

  87. Scherer, G.W., Drying of Gels II, J. Non-Cryst. Solids, 1986, vol. 89, no. 2, pp. 217-238.

    Google Scholar 

  88. Scherer, G.W., Drying of Gels III, J. Non-Cryst. Solids, 1987, vol. 91, no. 1, pp. 101-121.

    Google Scholar 

  89. Scherer, G.W., Stress and Fracture during Drying of Gels, J. Non-Cryst. Solids, 1990, vol. 121, nos. 1-3, pp.104-109.

    Google Scholar 

  90. Scherer, G.W., Bending a Gel Rod with an Impermeable Surface, J. Non-Cryst. Solids, 1996, vol. 204, pp. 73-77.

    Google Scholar 

  91. Scherer, G.W., Stress from Re-Immersion of Partially Dried Gel, J. Non-Cryst. Solids, 1997, vol. 212, pp.268-280.

    Google Scholar 

  92. Lierop, J.G., Huizing, A., and Meerman, W.C., Preparation of Dried Monolithic SiO 2-Gel Bodies by an Autoclave Process, J. Non-Cryst. Solids, 1986, vol. 82, nos.1-3, pp. 265-270.

    Google Scholar 

  93. Cooper, A., Wood, C.D., and Holmes, A., Synthesis of Well-Defined Macroporous Polymer Monoliths by Sol-Gel Polymerization in Supercritical CO 2, Ind. Eng.Chem. Res., 2000, vol. 39, pp. 4741-4744.

    Google Scholar 

  94. Fricke, J. and Tillotson, T., Aerogels: Production, Char-acterization, and Applications, Thin Solid Films, 1997, vol. 297, nos. 1-2, pp. 212-223.

    Google Scholar 

  95. Ciriminna, R., Campestrii, S., and Pagliaro, M., The Effects of Material Properties on the Activity of Sol-Gel Entrapped Perruthenate under Supercritical Conditions, Adv. Synth. Catal., 2003, vol. 345, pp. 1261-1267.

    Google Scholar 

  96. Yoda, S., Otake, K., Takebayashi, Y., Sugeta, T., and Sato, T., Effects Supercritical Impregnation Conditions on the Properties of Silica-Titania Aerogels, J. Non-Cryst. Solids, 2001, vol. 285, pp. 8-12.

    Google Scholar 

  97. Science of Ceramic Chemical Processing, Hench, L.L. and Ulrich, D.R., Eds., New York: Wiley, 1986.

  98. Meyer, M., Fischer, A., and Hoffmann, H., Novel Ringing Silica Gels That Do Not Shrink, J. Phys. Chem. B, 2002, vol. 106, pp. 1528-1533.

    Google Scholar 

  99. Bohlayer, J.A., Method for Making Low-Expansion Glass Article of Complex Shape, US Paten 4940675, 1990.

  100. Zhang, M.Q., Rong, M.Z., Zeng, H.M., Schmitt, S., Wetzel, B., and Friedrich, K., Atomic Force Microscopy Study on Structure and Properties of Irradiation Grafted Silica Particles in Polypropylene-Based Nanocomposites, J. Appl. Polym. Sci., 2001, vol. 80, pp. 2218-2227.

    Google Scholar 

  101. Hajji, P., David, L., Gerard, J.F., Pascault, J.P., and Vigier, G., Synthesis, Structure, and Morphology of Polymer-Silica Hybrid Nanocomposites Based on Hydroxyethyl Methacrylate, J. Polym. Sci., Part B: Polym. Phys., 1999, vol. 37, pp. 3172-3187.

    Google Scholar 

  102. Park, O.-H., Eo, Y.-J., Choi, Y.-K., and Bae, B.S., Preparation and Optical Properties of Silica-Poly(ethylene oxide) Hybrid Materials, J. Sol-Gel Sci. Technol., 2000, vol. 16, no. 3, pp. 235-241.

    Google Scholar 

  103. Takahashi, R., Nakanishi, K., and Soga, N., Aggregation Behavior of Alkoxide-Derived Silica in Sol-Gel Process in Presence of Poly(ethylene oxide), J. Sol-Gel Sci. Technol., 2000, vol. 17, no. 1, pp. 7-18.

    Google Scholar 

  104. Iwashita, K., Tadanaga, K., and Minami, T., Water Permeation Properties of SiO 2 -RSiO 3/2 (R = Methyl, Vinyl, Phenyl) Thin Films Prepared by Sol-Gel Method on Nylon-6 Substrate, J. Appl. Polym. Sci., 1996, vol.61, pp. 2173-2177.

    Google Scholar 

  105. Tong, X., Tang, T., Feng, Z., and Huang, B., Preparation of Polymer/Silica Hybrid through Sol-Gel Method Involving Emulsion Polymers: II. Poly(ethyl acrylate) / SiO 2, J. Appl. Poly. Sci., 2002, vol. 86, pp. 3532-3536.

    Google Scholar 

  106. Khimich, N.N., Koptelova, L.A., and Khimich, G.N., Synthesis and Structure of Nanocomposites in Aromatic Ester Dendrimer-SiO 2 System, Zh. Prikl. Khim.(St. Petersburg), 2003, vol. 76. no. 3, pp. 457-462.

    Google Scholar 

  107. Wu, P.-W., Dunn, B., Doan, V., Schwartz, B.J., Yablonovitch, E., and Yamane, M., Controlling the Spontaneous Precipitation of Silver Nanoparticles in Sol-Gel Materials, J. Sol-Gel Sci. Technol., 2000, vol.19, nos. 1-3, pp. 249-252.

    Google Scholar 

  108. Garcia-Rodrigues, F.J., Gonzales-Hernandez, J., Perez-Robles, F., Vorobiev, Y.V., Manzano-Ramirez, A., Jimenez-Sandoval, S., and Chao, B.S., Sol-Gel SiO 2 Films Containing Colloidal Copper Particles for Surface-Enhanced Raman Scattering of Graphite, J. Raman Spectrosc., 1998, vol. 29, pp. 763-771.

    Google Scholar 

  109. Perez-Robles, F., Garcia-Rodrigues, F.J., Jimenes-Sandoval, S., and Gonzales-Hernandez, J., Raman Study of Copper and Iron Oxide Particles Embedded in an SiO 2 Matrix, J. Raman Spectrosc., 1999, vol. 30, pp. 1099-1104.

    Google Scholar 

  110. Onoda, M., Masuda, T., and Nakayama, H., Preparation of Polypyrrole-Silica Glass Composite Films by Sol-Gel Process and Their Electrochemical Properties, J.Electr. Eng. Jpn., 1997, vol. 120, pp. 1-8.

    Google Scholar 

  111. Siuzdak, D., Start, P.R., and Mauritz, K.A., Surlyn / Silicate Hybrid Materials: I. Polymer in situ Sol-Gel Process and Structure Characterization, J. Appl. Polym.Sci., 2000, vol. 77, pp. 2832-2844.

    Google Scholar 

  112. Lin, J.M., Ma, C.C.M., Wang, F.Y., Wu, H.D., and Kuang, S.C., Thermal, Mechanical and Morphological Properties of Phenolic Resin/Silica Hybrid Ceramers, J.Polym. Sci., Part B: Polym. Phys., 2000, vol. 38, pp.1699-1706.

    Google Scholar 

  113. Takahashi, R., Sato, S., Sodesawa, T., Suzuki, M., and Ogura, K., Preparation of Microporous Silica Gel by Sol-Gel Process in the Presence of Ethylene Glycol Oligomers, Bull. Chem. Soc. Jpn., 2000, vol. 73, pp.765-774.

    Google Scholar 

  114. Nakane, K., Yamashita, T., Iwakura, K., and Suzuki, F., Properties and Structure of Poly(vinyl alcohol)/Silica Composites, J. Appl. Polym. Sci., 1999, vol. 74, pp.133-138.

    Google Scholar 

  115. Haas, K.-H., Hybrid Inorganic-Organic Polymers Based on Organically Modified Si-Alkoxides, Adv. Eng.Mater., 2000, vol. 2. no. 9, pp. 571-582.

    Google Scholar 

  116. Qin, H.-H., Dong, J.-H., Qiu, K.-Y., and Wei, Y., Preparation of Poly(methyl acrylate-co-itaconic anhy-dride)/ SiO 2 Hybrid Materials via the Sol-Gel Pro-cess-the Effect of the Coupling Agent, Inorganic Content, and Nature of the Catalyst, J. Polym. Sci., Part A: Polym. Chem., 2000, vol. 38, pp. 321-328.

    Google Scholar 

  117. Zhou, W., Dong, J.H., Qiu, K.-Y., and Wei, Y., Preparation and Properties of Poly(styrene-co-maleic anhy-dride)/ SiO 2 Hybrid Materials by the in situ Sol-Gel Process, J. Polym. Sci., Part A: Polym. Chem., 1998, vol. 36, pp. 1607-1613.

    Google Scholar 

  118. Wu, K.H., Chang, T.C., Wang, Y.T., and Chiu, Y.S., Organic-Inorganic Hybrid Materials: I. Characterization and Degradation of Poly(imide-silica) Hybrid, J.Polym. Sci., Part A: Polym. Chem., 1999, vol. 37, p.2275-2284.

    Google Scholar 

  119. Khimich, N.N., Semov, M.P., and Chepik, L.F., Nano-composites in the Organic Ru 2+ Complex-SiO 2 Sys-tem-A New Class of Metal-Containing Polymer Complexes, Dokl. Akad. Nauk, 2004, vol. 394, no. 1, pp. 1-3.

    Google Scholar 

  120. Yang, J.M., Shin, C.H., Chang, C.-N., Lin, F.H., Jiang,J.M., Hsu, Y.G., Su, W.Y., and See, L.C., Preparation of Epoxy-SiO 2 Hybrid Sol-Gel Material for Bone Cement, J. Biomed. Mater. Res., Part A, 2003, vol. 64, pp. 138-146.

    Google Scholar 

  121. Brusatin, G., Innocenzi, P., Guglielmi, M., and Babon-neau, F., Basic Catalyzed Synthesis of Hybrid Sol-Gel Materials Based on 3-Glycidoxypropyltrimethoxysilane, J. Sol-Gel Sci. Technol., 2003, vol. 26, no. 1, pp.303-306.

    Google Scholar 

  122. Innocenzi, P., Exposto, M., and Maddalena, A., Mechanical Properties of 3-Glycidoxypropyltrimethox-ysilane Based Hybrid Organic-Inorganic Materials, J.Sol-Gel. Sci. Technol., 2001, vol. 20, no. 3, pp. 293-301.

    Google Scholar 

  123. Marino, I.G., Bersani, D., Lottici, P.P., Tosini, L., and Montenero, A., Raman Investigation of Protonation of DR1 Molecules in Silica or ORMOSILs Matrices by the Sol-Gel Technique, J. Raman Spectrosc., 2000, vol. 31, pp. 555-558.

    Google Scholar 

  124. Weng, W.-H., Chen, H., Tsai, S.-P., and Wu, J.-C., Thermal Property of Epoxy/SiO 2 Hybrid Material Synthe-sized by the Sol-Gel Process, J. Appl. Polym. Sci., 2004, vol. 91, no. 1, pp. 532-537.

    Google Scholar 

  125. Kloster, G.M. and Watton, S.P., Oxidation of Immobi-lized Iron(II)-1,10-Phenanthroline Complexes by Cerium(IV): A Probe into the Site Accessibility of Metal Complexes Covalently Attached to Silica Sol-Gel, Inorg. Chim. Acta, 2000, vol. 297, pp. 156-161.

    Google Scholar 

  126. Bekiari, V., Stathatos, E., Lianos, P., Stangar, V.L., Orel, B., and Judeinstein, P., Studies on Hybrid Organic-Inorganic Nanocomposite Gels Using Photo-luminescence Techniques, Monatsh. Chem., 2001, vol. 132, pp. 97-102.

    Google Scholar 

  127. Gunji, T., Makabe, Y., Takamura, N., and Abe, Y., Preparation and Characterization of Organic-Inorganic Hybrids and Coating Films from 3-Methacryloxy-Pro-pyl-Polysilsesquioxane, Appl. Organomet. Chem., 2001, vol. 15, no. 8, pp. 683-692.

    Google Scholar 

  128. Wang, B., Zhang, J., and Dong, S., Silica Sol-Gel Com-posite Film as an Encapsulation Matrix for the Construction of an Amperometric Tyrosinase-Based Biosensor, Biosens. Bioelectron., 2000, vol. 15, nos. 7-8, pp. 397-402.

    Google Scholar 

  129. Orefice, R.L., Hench, L.L., Clark, A.E., and Brennan, A.B., Novel Sol-Gel Bioactive Fibers, J. Biomed.Mater. Res., 2001, vol. 55, pp. 460-467.

    Google Scholar 

  130. Kim, Y.D., Dordik, J.S., and Clark, D.S., Siloxane-Based Biocatalytic Films and Paints for Use as Reactive Coatings, Biotechnol. Bioeng., 2001, vol. 72, no. 4, pp. 475-482.

    Google Scholar 

  131. Böttcher, H., Bioactive Sol-Gel Coatings, J. Prakt.Chem., 2000, vol. 342, no. 5, pp. 427-436.

    Google Scholar 

  132. Tan, S.N., Oh, J.T., and Li, J., Silica Sol-Gel Immobi-lized Amperometric Enzyme Electrode for Peroxide Determination in the Organic Phase, J. Electroanal.Chem., 1998, vol. 448, no. 1, pp. 69-77.

    Google Scholar 

  133. Shchipunov, Y.A., Karpenko, T.Y., Bakunina, I.Y., Burtseba, Y.V., and Zvyagintseva, T.N., A New Precursor for the Immobilization of Immobilized Enzymes Inside Sol-Gel-Derived Hybrid Silica Nanocomposites Containing Polysaccharides, J. Biochem. Biophys. Methods, 2004, vol. 58, no. 1, pp. 25-38.

    Google Scholar 

  134. Park, J.-U., Kim, W.-S., and Bae, B.-S., Photoinduced Low Refractive Index in a Photosensitive Organic-Inorganic Hybrid Material, J. Mater. Chem., 2003, vol. 13, no. 4, pp. 738-741.

    Google Scholar 

  135. Ertekin, K., Karapire, C., Alp, S., and Yenigul, B., Photophysical and Photochemical Characteristics of an Azlactone Dye in Sol-Gel Matrix; a New Fluorescent pH Indicator, Dyes Pigments, 2003, vol. 56, no. 2, pp. 125-133.

    Google Scholar 

  136. Prosposito, P., Casalboni, M., Matteis, F.D., and Pizzo-ferrato, R., Organically Modified Sol-Gel Films Incorporating an Infrared Dye, Thin Solid Films, 2000, vol. 373, nos. 1-2, pp. 150-154.

    Google Scholar 

  137. Shiu, F.-M., Chem, M.-H., Tang, R.-F., Jeng, Y.-J., Chang, M.-Y., and Perng, J.-H., Luminescence Study of Quinine and Its Derivatives in the Sol-Gel System, J.Non-Cryst. Solids, 1997, vol. 209, no. 1, pp. 61-68.

    Google Scholar 

  138. Clark, A., Terpugov, V., Medrano, F., Cervantes, M., and Soto, D., Luminescence and Non-Linear Optical Properties of Erbium-Tetraphenylporphyrin Complexes Incorporated within a Silica Matrix by Sol-Gel Process, Opt. Mater., 1999, vol. 13, pp. 355-360.

    Google Scholar 

  139. Bekiari, V. and Lianos, P., Multicolor Emission from Terpyridine-Lanthanide Ion Complexes Encapsulated in Nanocomposite Silica/Poly(ethylene glycol) Sol-Gel Matrices, J. Lumin., 2003, vol. 101, pp. 135-140.

    Google Scholar 

  140. Wang, H., Xu, G., and Dong, S., Electrochemiluminescence Sensor Using Tris(2,2'-Bipyridyl)ruthenium(II) Immobilized in Eastman-AQ55D-Silica Composite Thin-Films, Anal. Chim. Acta, 2003, vol. 480, pp. 285-290.

    Google Scholar 

  141. Hsiue, G.-H., Lee, R.-H., and Jeng, R.-J., Organic Sol-Gel Materials for Second-Order Nonlinear Optics Based on Melamines, J. Polym. Sci., Part A: Polym.Chem., 1999, vol. 37, pp. 2503-2510.

    Google Scholar 

  142. Lee, R.-H., Hsiue, G.-H., and Jeng, R.-H., All Sol-Gel Organic-Inorganic Nonlinear Optical Materials Based on Melamines and an Alkoxysilane Dye, Polymer, 1999, vol. 40, no. 23, pp. 6417-6428.

    Google Scholar 

  143. Hsiue, H.-H., Kuo, W.-J., Lin, C.-H., and Jeng, R.-J., Preparation and Characterization of All Organic NLO Sol-Gel Materials Based on Amino Azobenzene Dyes, Macromol. Chem. Phys., 2000, vol. 201, no. 17, pp. 2336-2347.

    Google Scholar 

  144. Lee, R.-H., Hsiue, H.-H., and Jeng, R.-J., Organically Modified Inorganic Sol-Gel Materials for Second-Order Nonlinear Optics, J. Appl. Polym. Sci., 2001, vol. 79, pp. 1852-1859.

    Google Scholar 

  145. Ji, S., Li, Z., Zhou, X., Cao, M., Dai, D., Zhang, R., Li, D., and Ye, C., Silica-Based Hybrid Nonlinear Opti-cal Chromophore-Trapping Film Prepared by Sol-Gel Polymerization, Polym. Adv. Technol., 2003, vol. 14, nos. 3-5, pp. 254-259.

    Google Scholar 

  146. Jeng, R.-J., Hung, W.-Y., Chen, C.-P., and Hsiue, H.-H., Organic/Inorganic NLO Materials Based on Reactive Polyimides and a Bulky Alkoxysilane Dye via Sol-Gel Process, Polym. Adv. Technol., 2003, vol. 14, no. 1, pp. 66-75.

    Google Scholar 

  147. Krocher, O., Kopperl, R.A., and Baiker, A., Silica Hybrid Gel Catalysts Containing Ruthenium Com-plexes: Influence of Reaction Parameters on the Catalytic Behaviour in the Synthesis of N,N-Dimethylformamide from Carbon Dioxide, J. Mol. Catal., Part A: Chem., 1999, vol. 140, no. 2, pp. 185-193.

    Google Scholar 

  148. Neumann, R. and Cohen, M., Silica Tethered with Poly(ethylene and/propylene) Oxide as Supports for Polyoxometalates in Catalytic Oxidation, J. Mol.Catal., Part A: Chem., 1999. vol. 146. nos. 1-2, pp.291-298.

    Google Scholar 

  149. Ishii, K., Mizukami, F., Niwa, S.-I., Kutsuzawa, R., Toba, M., and Fujii, Y., A New Catalyst Preparation by a Combination of Complexing Agent-Assisted Sol-Gel and Impregnation Methods, Catal. Lett., 1998, vol. 52, nos. 1-2, pp. 49-53.

    Google Scholar 

  150. Kang, J., Wistuba, D., and Schurig, V., A Silica Monolithic Column Prepared by Sol-Gel Process for Enanti-omeric Separation by Capillary Electrochromatography, Electrophoresis (Weinheim, Fed. Repub. Ger.), 2002, vol. 23, nos. 7-8, pp. 1116-1120.

    Google Scholar 

  151. Allen, D. and Rassi, Z.E., Silica-Based Monoliths for Capillary Electrochromatography: Methods of Fabrication and Their Application in Analytical Separation, Electrophoresis (Weinheim, Fed. Repub. Ger.), 2003, vol. 24, nos. 22-23, pp. 3962-3976.

    Google Scholar 

  152. Voronkov, M.G., Vlasova, N.N., and Pozhidaev, Yu.N., Organosilicon Ion-Exchange and Complexing Sorbents (A Review), Zh. Prikl. Khim. (St. Petersburg), 1996, vol. 69, no. 5, pp. 705-718.

    Google Scholar 

  153. Pozhidaev, Yu. N., Bol'shakova, S.A., Pestunova, A.E., Vlasova, N.N., and Voronkov, M.G., N,N'-bis(3-Ethox-ysilylpropyl) thiocarbamide-Based Sorbents for Extraction of Carcinogenic and Toxic Compounds from Tobacco Smoke, Dokl. Akad. Nauk, 1997, vol. 355, no. 5, pp. 653-655.

    Google Scholar 

  154. Voronkova, M.G., Vlasova, N.N., Pozhidaev, Yu. N., Belousova, L.I., and Grigor'eva, O. Yu., Organosilicon Sorbents of Noble, Nonferrous, Toxic, and Rare Metals, Nauka-Proizv., 2003, vol. 62, no. 6, pp. 4-9.

    Google Scholar 

  155. Zub, Yu.L. and Parish, R.V., Functionalized Polysiloxane Sorbents: Preparation, Structure, Properties, and Use, Stud. Surf. Sci. Catal., 1996, vol. 99, pp. 285-299.

    Google Scholar 

  156. Zub, Yu.L., Roesky, H.W., Malyar, M.M., Chuiko, A.A., Jaroniec, M., and Murugavel, R.M., Designing of Processes for Synthesis of Polyferromethyl-Siloxane Sorbents Using a Sol-Gel Method, Solid State Sci., 2001, vol. 3, pp. 169-182.

    Google Scholar 

  157. Zub, Yu.L., Melnyk, I.V., Chuiko, A.A., Cauzzi, D., and Predieri, G., Design of Functionalized Polysiloxanes: Synthesis and Investigation of Sulfur-Containing Xero-gels with Mono-and Bifunctional Surface Layer, Chem. Phys. Technol. Surf., 2002, no. 7, pp. 35-45.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khimich, N.N. Synthesis of Silica Gels and Organic-Inorganic Hybrids on Their Base. Glass Physics and Chemistry 30, 430–442 (2004). https://doi.org/10.1023/B:GPAC.0000045925.84139.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GPAC.0000045925.84139.eb

Keywords

Navigation