Skip to main content
Log in

Casimir Energy for Spherical Shell in Schwarzschild Black Hole Background

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we consider the Casimir energy of massless scalar fields which satisfy the Dirichlet boundary condition on a spherical shell. Outside the shell, the spacetime is assumed to be described by the Schwarzschild metric, while inside the shell it is taken to be the flat Minkowski space. Using zeta function regularization and heat kernel coefficients we isolate the divergent contributions of the Casimir energy inside and outside the shell, then using the renormalization procedure of the bag model the divergent parts are cancelled, finally obtaining a renormalized expression for the total Casimir energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Plunien, G., Müller, B., and Greiner, W. (1986). Phys. Rep. 134, 87.

    Google Scholar 

  2. Mostepanenko, V. M., and Trunov, N. N. (1997). The Casimir Effect and Its Applications, Oxford University Press, Oxford.

    Google Scholar 

  3. Casimir, H. B. G. (1948). Proc. K. Ned. Akad. Wet. 51, 793.

    Google Scholar 

  4. Elizalde, E., Odintsov, S. D., Romeo, A., Bytsenko, A. A., and Zerbini, S. (1994). Zeta Regularization Techniques With Applications, World Scientific, Singapore.

    Google Scholar 

  5. Elizalde, E. (1995). Ten Physical Applications of Spectral Zeta Functions, Lecture Notes in Physics, Springer-Verlag, Berlin.

    Google Scholar 

  6. Kirsten, K. (2001). Spectral Functions in Mathematics and Physics, Chapman and Hall/CRC, Boca Raton, Florida.

    Google Scholar 

  7. Birrell, N. D., and Davies, P. C. W. (1986). Quantum Fields in Curved Space, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  8. Bormann, K., and Antonsen, F. (1996). Proceedings of the 3rd International Alexander Friedman Seminar on Gravitation and Cosmology, Friedman Lab. Press, St. Petersburg, 1995. (hep-th/9608142).

    Google Scholar 

  9. Christensen, S. M. (1976). Phys. Rev. D 14, 2490; Christensen, S. M. (1978). Phys. Rev. D 17, 946.

    Google Scholar 

  10. Adler, S. L., Lieberman, J., and Ng, Y. J. (1977). Ann. Phys. (NY) 106, 279.

    Google Scholar 

  11. Deser, S., Duff, M. J., and Isham, C. J. (1976). Nucl. Phys. B 11, 45; see also Capper, D. M., and Duff, M. J. (1974). Nuovo Cimento A 23, 173; Deser, S., Duff, M. J., and Isham, C. J. (1975). Phys. Lett. A 53, 361.

    Google Scholar 

  12. Hawking, S. W. (1977). Commun. Math. Phys. 55, 133.

    Google Scholar 

  13. Graham, N., Jaffe, R. L., Khemani, V., Quandt, M., Scandurra, M., and Weigel, H. (2002). Nucl. Phys. B 645, 49.

    Google Scholar 

  14. Graham, N., Jaffe, R. L., Khemani, V., Quandt, M., Scandurra, M., and Weigel, H. (2003). Phys. Lett. B 572, 196 (hep-th/0207205).

    Google Scholar 

  15. Nugayev, R. M., Bashkov, V. I. (1979). Phys. Lett. A 69, 385.

    Google Scholar 

  16. Nugayev, R. M. (1982). Phys. Lett. A 91, 216.

    Google Scholar 

  17. Davies, P. C. W., and Fulling, S. A. (1977). Proc. R. Soc. Lond. A 356, 237.

    Google Scholar 

  18. Widom, A., Sassaroli, E., Srivastava, Y. N., and Swain, J. (1998). (quant-ph/9803013).

  19. Sassaroli, E., Srivastava, Y. N., Swain, J., and Widom, A. (1998). (hep-ph/9805479).

  20. Christensen, S. M., and Fulling, S. A. (1977). Phys. Rev. D 15, 2088.

    Google Scholar 

  21. Antonsen, F. (1997). (gr-qc/9710100).

  22. Balbinot, R., and Fabbri, A. (1999). Phys. Lett. B 459, 112.

    Google Scholar 

  23. Balbinot, R., Fabbri, A., Frolov, V., Nicolini, P., Sutton P., and Zelniko, A. (2001). Phys. Rev. D 63, 084029.

    Google Scholar 

  24. Matyjasek, J. (1999). Acta Phys. Polon. B 30, 971.

    Google Scholar 

  25. Matyjasek, J. (1999). Phys. Rev. D 59, 044002.

    Google Scholar 

  26. Boyer, T. H. (1968). Phys. Rev. 174, 1764.

    Google Scholar 

  27. Balian, R., and Duplantier, B. (1978). Ann. Phys. (NY). 112, 165.

    Google Scholar 

  28. Milton, K. A., DeRaad, L. L., and Schwinger, J. (1978). Ann. Phys. (NY) 115, 338.

    Google Scholar 

  29. Bender, C. M., Milton, K. A. (1994). Phys. Rev. D 50, 6547.

    Google Scholar 

  30. Milton, K. A. (1997). Phys. Rev. D 55, 4940.

    Google Scholar 

  31. Cognola, G., Elizalde, E., and Kirsten, K. (2001). J. Phys. A 34, 7311.

    Google Scholar 

  32. Milton, K. A. (1980). Ann. Phys. (N.Y). 127, 49; Mitton, K. A. (1980). Phys. Rev. D 22, 1441.

    Google Scholar 

  33. Bordag, M., Elizalde, E., Kirsten, K., and Leseduarte, S. (1997). Phys. Rev. D 56, 4896.

    Google Scholar 

  34. Elizalde, E., Bordag, M., and Kirsten, K. (1998). J. Phys. A: Math. Gen. 31, 1743.

    Google Scholar 

  35. Setare, M. R. (2001). Class. Quant. Grav. 18, 2097.

    Google Scholar 

  36. Blau, S., Visser, M., and Wipf, A. (1988). Nucl. Phys. B 310, 163.

    Google Scholar 

  37. Setare, M. R., and Mansouri, R. (2001). Class. Quant. Grav. 18, 2331.

    Google Scholar 

  38. Setare, M. R. (2001). Class. Quant. Grav. 18, 4823.

    Google Scholar 

  39. Bezerra de Mello, E. R., Bezerra, V. B., and Khusnutdinov, N. R. (2001). J. Math. Phys. 42, 562–581.

    Google Scholar 

  40. Khusnutdinov, Nail. R., Sushkov, Sergey. V. (2002). Phys. Rev. D 65, 084028.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Setare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setare, M.R., Altaie, M.B. Casimir Energy for Spherical Shell in Schwarzschild Black Hole Background. General Relativity and Gravitation 36, 331–341 (2004). https://doi.org/10.1023/B:GERG.0000010479.98616.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000010479.98616.da

Navigation