Skip to main content
Log in

Scale-effects on mean and standard deviation of the mechanical properties of condensed matter: an energy-based unified approach

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The size effects on the mean values of the mechanical properties of condensed matter and on the related variances are analysed by means of a unified approach based on the multiscale character of energy dissipation. In particular, the scaling law for fragmentation energy density is obtained taking into account the self-similarity of fragments. It is based on a generalization of the three classical comminution laws that has been performed to evaluate the energy dissipation, computing volume and surface area of the particles for one- two- and three-dimensional fragmented objects. The result is general and can be applied to different fractal energy dissipation mechanisms, e.g., plasticity. Based on this approach, the scaling laws for mean and standard deviation values of the main mechanical properties of materials can be derived, like Young's and shear elastic moduli, ultimate normal and shear stresses and strains, fracture energy and toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Béla Beke, D. (1964). Principles of Comminution. Publishing House of the Hungarian Academic of Sciences, Budapest.

    Google Scholar 

  • Bond, F.C. (1952). The third theory of comminution. Mining. Enginee. 4, 484-494.

    Google Scholar 

  • Bouchaud, E., Lapasset, G. and Planes, G. (1990). Fractal dimension of fractured surfaces: a universal value? Europhys. Lett. 13, 73-79.

    Article  CAS  Google Scholar 

  • Carpinteri, A. and Pugno, N. (2002a). One-two and three-dimensional universal laws for fragmentation due to impact and explosion. J. Appl. Mech. 69, 854-856.

    Article  Google Scholar 

  • Carpinteri, A. and Pugno, N. (2002b). A fractal comminution approach to evaluate the drilling energy dissipation. Numerical and Analytical Methods in Geomechanics 26, 499-513.

    Article  Google Scholar 

  • Carpinteri, A. and Pugno, N. (2002c). Fractal fragmentation theory for shape effects of quasi-brittle materials in compression. Mag. of Concrete Research 54(6), 473-480.

    Article  Google Scholar 

  • Carpinteri, A. and Pugno, N. (2003). A multifractal comminution approach for drilling scaling laws. Powder Technology 131(1), 93-98.

    Article  CAS  Google Scholar 

  • Carpinteri, A. (1997). Structural Mechanics — A Unified Approach E & FN Spon.

  • Carpinteri, A. (1994a). Scaling laws and renormalization groups for strength and toughness of disordered materials. Int. J. Solid Struct. 31, 291-302.

    Article  Google Scholar 

  • Carpinteri, A. (1994b). Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech. Mater. 18, 89-101.

    Article  Google Scholar 

  • Carpinteri, A., Chiaia, B. and Cornetti P. (2002). A scale-invariant cohesive crack model for quasi-brittle materials. Enginee. Fract. Mech. 69(2), 207-217.

    Article  Google Scholar 

  • Engleman, R., Rivier, N. and Jaeger, Z. (1988). Size distribution in sudden breakage by the use of entropy maximization. J. Appl. Phys. 63, 4766-4768.

    Article  Google Scholar 

  • Feder, J. (1988). Fractals. Plenum Publishing Corporation, New York.

    Google Scholar 

  • Griffith, A.A. (1921). The phenomenon of rupture and flow in solids. Philosoph. Trans. of the Royal Society, London A221, 163-198.

    Google Scholar 

  • Hahner, P., Bay, K. and Zaiser, M. (1988) Fractal dislocation patterning during plastic deformation. Physical Review Letters 81, 2470-2473.

    Article  Google Scholar 

  • Kendall, K. (1978). The impossibility of comminuting small particles by compression. Nature 272, 711-712.

    Article  Google Scholar 

  • Kick, F. (1985). Das Gesetz der Proportionalen Widerstände. Leipzig.

  • Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. Freeman, New York.

    Google Scholar 

  • Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636-638.

    Article  CAS  Google Scholar 

  • Nakamura, A. and Fujiwara, A. (1991). Icarus 92, 132.

    Article  Google Scholar 

  • Novozhilov, V. (1969). On a necessary and sufficient criterion for brittle strength. Prik. Mat. Mek. 33, 212-222.

    Google Scholar 

  • Smekal, A. (1937). Physikalisches und technisches Arbeitsgesetz der Zerkleinerung. Zeitschr. VDI, Beiheft Verfahrenstechnik.

  • Simonov, I.V. (2002). The feasibility of using large impact to destroy a dangerous asteroid. Int. J. of Impact Engineering 27, 293-315.

    Article  Google Scholar 

  • Treacy, M.M., Ebbesen, T.W. and Gibson, J.M. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678-680.

    Article  CAS  Google Scholar 

  • Turcotte, D.L. (1992). Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge.

    Google Scholar 

  • von Rittinger, P.R.(1867). Lehrbuch der Aufbereitungskunde. Berlin.

  • Weiss, J. (2001). Fracture and fragmentation of ice: a fractal analysis of scale invariance. Enginee. Fract. Mech. 68, 1975-2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Pugno, N. Scale-effects on mean and standard deviation of the mechanical properties of condensed matter: an energy-based unified approach. International Journal of Fracture 128, 253–261 (2004). https://doi.org/10.1023/B:FRAC.0000040988.61253.05

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FRAC.0000040988.61253.05

Keywords

Navigation