Skip to main content
Log in

Pseudo-plasticity and Pseudo-inhomogeneity Effects in Materials Mechanics

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

It is shown that a large variety of physical effects such as continuously distributed defects, heat conduction, anelasticity (plasticity in finite-strains, growth), phase transitions and more generally shock-waves, can be viewed as pseudo-material inhomogeneities when continuum thermomechanics is completely projected onto the material manifold itself. Main ingredients in this approach are the notions of local structural rearrangements (Epstein and Maugin) and of its thermodynamical dual, the Eshelby material stress tensor. An outcome of this is the unification of the theories of inhomogeneity of Eshelby on the one hand, and of Kroener-Noll-Wang, on the other hand. The notion of configurational forces as understood nowadays in solid-state physics and engineering mechanics follows necessarily from these developments. They are driving forces acting on sets of material points that correspond to strongly localized fields and, in the limit, singularities, which are also viewed as pseudo-inhomogeneities. The second law of thermodynamics then is a constraint imposed on the time evolution of these pseudo-inhomogeneities (e.g., plastic evolution, volumetric growth, progress of a crack, advancement of a phase-transition front, etc.). This has very powerful implications in numerical schemes drawn directly on the material manifold (e.g., thermodynamically admissible volume-element scheme for the simulation of phase-transformation evolution).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kroener, Inneren Spannungen und der Inkompatibilitätstensor in der Elastizitätstheorie. Z. Angew. Phys. 7 (1958) 249–257.

    Google Scholar 

  2. V.L. Indenbom, Internal stress in crystals. In: B. Gruber (ed.), Theory of Crystal Defects, Proc. of Summer School, Hrazany, Czech, September 1964. Acad. Publ. House, Prague, and Academic Pres, New York (1965) pp. 257–274.

    Google Scholar 

  3. M. Kleman, Dislocations, disclinations and magnetism. In: F.R.N. Nabarro (ed.), Dislocations in Solids, Vol. 5. North-Holland, Amsterdam (1980) pp. 100–215.

  4. G.A. Maugin, Classical magnetoelasticity in ferromagnets with defects. In: H. Parkus (ed.), Electromagnetic Interactions in Elastic Solids, CISM Udine Course (1977). Springer, Vienna (1979) pp. 243–324.

    Google Scholar 

  5. G.A. Maugin, Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993).

    MATH  Google Scholar 

  6. G.A. Maugin, Material forces: Concepts and applications. ASME Appl. Mech. Rev. 48 (1995) 213–245.

    Article  MathSciNet  Google Scholar 

  7. G.A. Maugin, Thermomechanics of Nonlinear Dissipative Behaviors. World Scientific, Singapore, and River Edge, NJ (1999).

    Google Scholar 

  8. M. Epstein and G.A. Maugin, The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech. 83 (1990) 127–133.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Noll, Materially uniform simple bodies with inhomogeneities. Arch. Rational Mech. Anal. 27 (1967) 1–32.

    Article  MathSciNet  ADS  Google Scholar 

  10. C.C. Wang, On the geometric structure of simple bodies, or mathematical foundations for the theory of continuous distributions of dislocations. Arch. Rational Mech. Anal. 27 (1967) 33–94.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. C.A. Truesdell and W. Noll, Nonlinear field theories of mechanics. In: S. Flügge (ed.), Handbuch der Physik, Vol. III/3. Springer, Berlin (1965).

    Google Scholar 

  12. G.A. Maugin, Kröner-Eshelby approach to continuum mechanics with dislocations, material inhomogeneities and peudo-inhomogeneities. In: B. Maruzewski (ed.), Proc. of Internat. Sympos. on Structured Media in Memory of E. Kröner, Poznan, Poland, September 2001. Poznan Univ. Press, Poland (2001) pp. 182–195.

    Google Scholar 

  13. G.A. Maugin, Geometry and thermomechanics of structural rearrangements: Ekkehart Kroener's legacy, GAMM'2002, Kroener's Lecture, Augsbug (2002). Z. Angew. Math. Mech. 83 (2002) 75–83.

    Article  MathSciNet  Google Scholar 

  14. B.A. Bilby, L.R.T. Lardner and A.N. Stroh, Continuum theory of dislocations and the theory of plasticity. In: Proc. of the Xth ICTAM, Brussels, 1956. Presses de l'Université de Bruxelles, Vol. 8 (1957) pp. 35–44.

    Google Scholar 

  15. E. Kroener, Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin (1958).

    MATH  Google Scholar 

  16. E. Kroener and A. Seeger, Nicht-lineare Elastizitätstheorie und Eigenspannungen. Arch. Rational Mech. Anal. 3 (1959) 97–119.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. E.H. Lee, Elastic-plastic deformation at finite strain. ASME Trans. J. Appl. Mech. 36 (1969) 1–6.

    MATH  Google Scholar 

  18. J. Mandel, Plasticité et Viscoplasticité Classique, CISM Udine Course. Springer, Vienna (1971).

    Google Scholar 

  19. J. Lubliner, Plasticity Theory. McMilan, New York (1990).

    MATH  Google Scholar 

  20. C. Teodosiu and F. Sidoroff, A Theory of finite elastoplasticity in single crystals. Internat. J. Engrg. Sci. 14 (1976) 165–176.

    Article  MATH  Google Scholar 

  21. F. Sidoroff, Variables internes en viscoélasticité et viscoplasticité. State Doctoral Thesis in Mathematics, Université Pierre et Marie Curie, Paris (1976).

    Google Scholar 

  22. K. Kondo, On the geometrical and physical foundations of the theory of yielding. In: Proc. of the 2nd Japanese National Congress of Applied Mechanics, Kyoto (1952) pp. 41–47.

  23. K. Kondo, Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. In: K. Kondo (ed.), RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by Means of Geometry, Vol. 1. Gakujutsu Bunken Fukyukai, Tokyo (1955) pp. 459–480.

    Google Scholar 

  24. M.O. Peach and J.S. Koehler, The force exerted on dislocations and the stress field produced by them. Phys. Rev. II-80 (1950) 436–439.

    Article  MathSciNet  ADS  Google Scholar 

  25. J.D. Eshelby, The force on an elastic singularity. Phil. Trans. Roy. Soc. London A 244 (1951) 87–112.

    MATH  MathSciNet  ADS  Google Scholar 

  26. J.R. Rice, Path-independent integral and the approximate analysis of strain concentrations by notches and cracks. Trans. ASME J. Appl. Mech. 33 (1968) 379–385.

    Google Scholar 

  27. L.D. Landau and E.M. Lifshitz, Theory of Fields. Mir, Moscow (1965).

  28. D. Rogula, Forces in material space. Arch. Mech. 29 (1967) 705–715.

    MathSciNet  Google Scholar 

  29. G.A. Maugin, Magnetized deformable Media in general relativity. Ann. Inst. Henri Poincaré A 15 (1971) 275–302.

    MATH  MathSciNet  Google Scholar 

  30. A. Golebiewska-Herrmann, On conservation laws of continuum mechanics. Internat. J. Solids Struct. 17 (1981) 1–9.

    Article  MathSciNet  Google Scholar 

  31. R. Kienzler and G. Herrmann, Mechanics in Material Space. Springer, Berlin (2000).

    MATH  Google Scholar 

  32. R. Kienzler and G.A. Maugin (eds), Configurational Mechanics of Materials. Springer, Vienna (2001).

    MATH  Google Scholar 

  33. M.E. Gurtin, The characterization of configurational forces. Arch. Rational. Mech. Anal. 126 (1994) 387–394.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. M.E. Gurtin, On the nature of configurational forces. Arch. Rational Mech. Anal. 131 (1995) 67–100.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. M.E. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics. Springer, Berlin (1999).

    Google Scholar 

  36. G.A. Maugin and C. Trimarco, Pseudo-momentum and material forces in nonlinear elasticity: Variational formulation and application to fracture. Acta Mech. 94 (1992) 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  37. G.A. Maugin, Thermomechanics of inhomogeneous-heterogeneous systems: Application to the irreversible progress of two-and three-dimensional defects. ARI 50 (1997) 41–56.

    Google Scholar 

  38. J.L. Ericksen, Special topics in elastostatics. In: C.-S.Yih (ed.), Advances in Applied Mechanics, Vol. 17. Academic Press, New York (1977) pp. 189–244.

    Google Scholar 

  39. G.A. Maugin, On Ericksen-Noether identity and material balance laws in thermoelasticity and akin phenomena. In: R.C. Batra and M.F. Beatty (eds), Contemporary Research in the Me chanics and Mathematics of Materials (J.L.Ericksen's 70th Anniversary Volume). C.I.M.N.E., Barcelone (1996) pp. 397–407.

    Google Scholar 

  40. M. Epstein and G.A. Maugin, Thermoelastic material forces: definition and geometric aspects. C. R. Acad. Sci. Paris II 320 (1995) 63–68.

    MATH  Google Scholar 

  41. H.D. Bui, Mécanique de la Rupture Fragile. Masson, Paris (1978).

  42. G.A. Maugin, Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam (1988).

  43. A. Fomèthe and G.A. Maugin, Material forces in thermoelastic ferromagnets. Cont. Mech. Thermodyn. 8 (1996) 275–292.

    Article  MATH  Google Scholar 

  44. G.A. Maugin, On the universality of the thermomechanics of forces driving singular sets. Arch. Appl. Mech. 70 (2000) 31–45.

    Article  MATH  Google Scholar 

  45. G.A. Maugin, Universality of the thermomechanics of forces driving singular sets in continuum mechanics. In: 20th ICTAM, Paper QG2. Chicago (August 2000).

  46. J. Kijowski and G. Magli, Unconstrained Hamiltonian formulation of general relativity with thermo-elastic surces. Classical Quantum Grav. 15 (1998) 3891–3916.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. R Abeyaratne and J.K. Knowles, A note on the friving traction acting on a propagating interface: Adiabatic and non-adiabatic processes in a continuum. ASME Trans. J. Appl. Mech. 67 (2000) 829–831.

    Article  MATH  Google Scholar 

  48. G.A. Maugin, Remarks on Eshelbian thermomechanics of materials. In: S. Cleja-Tigoiu and V. Tigoiu (eds), Proc. of the 5th Internat. Seminar on Geometry, Continua and Microstructure. Publ. House of Romanian Acad. Sciences, Bucharest (2001) pp. 159–166.

    Google Scholar 

  49. M. Esptein and G.A. Maugin, Notions of material uniformity and homogeneity. In: T. Tatsumi (ed.), Theoretical and Applied Mechanics, Proc. of ICTAM'96, Kyoto. Elsevier, Amsterdam (1997) pp. 201–215.

    Google Scholar 

  50. M. Epstein and G.A. Maugin, Thermomechanics of volumetric growth in uniform bodies. Internat. J. Plasticity 16 (2000) 51–978.

    Google Scholar 

  51. K. Ch. Le, Thermodynamically based constitutive equations for single crystals. In: G.A. Maugin (ed.), 1st Internat. Seminar on Geometry, Cotinua and Microstructure. Hermann, Paris (1999) pp. 87–97.

    Google Scholar 

  52. M.E. Gurtin and P. Cermelli, The characterization of geometrically necessary dislocations in finite plasticity. In: 20th ICTAM, Paper FG1. Chicago (August 2000).

  53. P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations. Internat. J. Engrg. Sci. 34 (1996) 1717–1735.

    Article  MATH  Google Scholar 

  54. G.A. Maugin, Eshelby stress in plasticity and fracture. Internat. J. Plasticity 10 (1994) 393–408.

    Article  MATH  Google Scholar 

  55. M. Epstein and G.A. Maugin, On the geometrical material Structure of unelasticity. Acta Mech. 115 (1995) 19–131.

    MathSciNet  Google Scholar 

  56. S. Cleja-Tigoiu and G.A. Maugin, Eshelby's stress tensors in finite elastoplasticity. Acta Mech. 139 (2000) 19–131.

    Article  Google Scholar 

  57. C. Dascalu and G.A. Maugin, Forces matérielles et taux de restitution de l'énergie dans les corps élastiques homogènes avec défauts. C. R. Acad. Sci. Paris II 317 (1993) 1135–1140.

    MATH  Google Scholar 

  58. G.A. Maugin, On shock waves and phase-transition fronts in continua. ARI 50 (1998) 145–150.

    Google Scholar 

  59. G.A. Maugin, Thermomechanics of forces driving singular point sets. Arch. Mech. 50 (1998) 477–487.

    Google Scholar 

  60. R. Abeyaratne and J.K. Knowles, Driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38 (1990) 345–360.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. R. Abeyaratne and J.K. Knowles, Kinetic relations and the propagation of phase boundaries in elastic solids. Arch. Rational Mech. Anal. 114 (1991) 119–154.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. G.A. Maugin, On the structure of the theory of polar elasticity. Phil. Trans. Roy. Soc. London A 356 (1998) 1367–1395.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. G.A. Maugin and C. Trimarco, Driving force on phase transition fronts in thermoelectroelastic crystals. Math. Mech. Solids 2 (1997) 199–214.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maugin, G.A. Pseudo-plasticity and Pseudo-inhomogeneity Effects in Materials Mechanics. Journal of Elasticity 71, 81–103 (2003). https://doi.org/10.1023/B:ELAS.0000005634.81007.11

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ELAS.0000005634.81007.11

Navigation