Skip to main content

Variational modeling of microstructures in plasticity

  • Chapter
Plasticity and Beyond

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 550))

Abstract

The analysis and simulation of microstructures in solids has gained crucial importance, virtue of the influence of all microstructural characteristics on a material’s macroscopic, mechanical behavior. In particular, the arrangement of dislocations and other lattice defects to particular structures and patterns on the microscale as well as the resultant inhomogeneous distribution of localized strain results in a highly altered stress-strain response. Energetic models predicting the mechanical properties are commonly based on thermodynamic variational principles. Modeling the material response in finite-strain crystal plasticity very often results in a nonconvex variational problem so that the minimizing deformation fields are no longer continuous but exhibit small-scale fluctuations related to probability distributions of deformation gradients to be calculated via energy relaxation. This results in fine structures which can be interpreted as the observed microstructures.

This manuscript is supposed to give an overview of the available methods and results in this field. We start by discussing the underlying variational principles for inelastic materials, derive evolution equations for internal variables, and introduce the concept of condensed energy. As a mathematical prerequisite we review the variational calculus of nonconvex potentials and the notion of relaxation. We use these instruments in order to study the initiation of plastic microstructures. Here we focus on a model of single-slip crystal plasticity. Afterward we move on to model the evolution of microstructures. We introduce the concept of essential microstructures and the corresponding relaxed energies and dissipation potentials, and derive evolution equations for microstructure parameters. We then present a numerical scheme by means of which the microstructure development can be computed, and show numerical results for particular examples in single- and double-slip plasticity. We discuss the influence of hardening and of slip system orientations in the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337-403 (1977).

    Article  MATH  Google Scholar 

  • Ball, J. M., and James, R. D.: Fine phase mixtures as minimizer of energy. Arch. Rat. Mech. Anal. 100, 13–52 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  • Ball, J., James, R.:Proposed experimental tests of a theory of Dne microstructures and the 2-well problem. Philos. Trans. R. Soc. Lond. A 338, 389-450 (1992).

    Article  MATH  Google Scholar 

  • Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulation: algorithms and applications. Comp. Meth. Appl. Mech. Eng. 193, 5143–5175 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, K.: Microstructure of martensite. Why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford (2003).

    Google Scholar 

  • Canadinc, D., Sehitoglu, H., Maier, H. J., Chumlyakov, Y. I.: Strain hardening behavior of aluminum alloyed Hadfield steel single crystals. Acta Mater. 53, 1831-1842 (2005).

    Article  Google Scholar 

  • Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. A 458, 299–317 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  • Carstensen, C., Conti, S., Orlando, A.: Mixed analytical-numerical relaxation in finite single-slip crystal plasticity. Continuum Mech. Thermodyn. 20, 275–301 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Christian, J. W., Mahajan, S.: Deformation twinning. Progr. Mater. Sci. 39, 1–157 (1995).

    Article  Google Scholar 

  • Chu, C., James, R. D.: Analysis of microstructures in Cu-14.0%Al-3.9%Ni by energy minimization. Journal de Physique III – Colloque C8 5, 143–149 (1995).

    Google Scholar 

  • Conti, S., Ortiz, M.: Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids 56, 1885–1904 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Rat. Mech. Anal. 178, 125–148 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  • Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989).

    Book  MATH  Google Scholar 

  • Dmitrieva, O., Dondl, P., Müller, S., Raabe, D., 2009. Lamination microstructure in shear deformed copper single crystals. Acta Mater. 57, 3439-3449.

    Article  Google Scholar 

  • Ericksen, J. L.: Equilibrium of bars. J. Elasticity 5, 191–201 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  • Govindjee, S., Mielke, A., Hall, G.J.: The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis. J. Mech. Phys. Solids 51, 1–26 (2003).

    Article  Google Scholar 

  • Govindjee, S., Hackl, K., Heinen, R.: An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Cont. Mech. and Thermodyn. 18, 443–453 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  • Hackl, K.: Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45, 667-688 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  • Hackl, K.: Relaxed potentials and evolution equations. In: Gumbsch, P. (Ed.), Third International Conference on Multiscale Materials Modeling. Fraunhofer IRB Verlag (2006).

    Google Scholar 

  • Hackl, K., Fischer, F. D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. Lond. A 464, 117-132 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Hackl, K., Fischer, F. D., Svoboda, J.: A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials. Proc. R. Soc. Lond. A 467, 1186–1196 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Hackl, K., Heinen, R.: On the calculation of energy-minimizing phase fractions in shape memory alloys. Comput. Meth. Appl. Mech. Eng. 196, 2401–2412 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  • Hackl, K., Heinen, R.: A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy. Continuum Mech. Thermodyn. 19, 499–510 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Hackl, K., Heinen, R.: An upper bound to the free energy of n-variant polycrystalline shape memory alloys. J. Mech. Phys. Solids 56, 2832–2843 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Hackl K., Hoppe U.: On the calculation of microstructures for inelastic materials using relaxed energies. In Miehe C. (Eds.), IUTAM Symposium on Computational Mechanics of Solid Materials at large Strains, Kluwer, 77–86 (2002).

    Google Scholar 

  • Variational modeling of shape memory alloys-an overview. Int. J. Mat. Res. 102, 643–651 (2011).

    Google Scholar 

  • Hackl, K., Kochmann, D. M.: Relaxed potentials and evolution equations for inelastic microstructures. In: Daya Reddy, B. (ed.), Theoretical, Computational and Modelling Aspects of Inelastic Media, IUTAM Bookseries, Springer, 27–39 (2008).

    Chapter  Google Scholar 

  • Hackl, K., Kochmann, D. M.: An incremental strategy for modeling laminate microstructures in finite plasticity – energy reduction, laminate orientation and cyclic behavior. In: de Borst, R., Ramm, E. (Eds.), Multiscale Methods in Computational Mechanics, Springer, 117–134 (2010).

    Chapter  Google Scholar 

  • Hackl, K., Schmidt-Baldassari, M., Zhang, W.: A micromechanical model for polycrystalline shape-memory alloys. Mat. Sci. Eng. A 378, 503–506 (2003).

    Article  Google Scholar 

  • Junker, P., Hackl, K.: Finite element simulations of poly-crystalline shape memory alloys based on a micromechanical model. Computational Mechanics 47, 505–517 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Kochmann, D. M.: Mechanical Modeling of Microstructures in Elasto-Plastically Deformed Crystalline Solids. Ph.D. Thesis (2009). Ruhr-University Bochum, Germany.

    Google Scholar 

  • Kochmann, D. M., Hackl, K.: Time-continuous evolution of microstructures in finite plasticity. In: Hackl, K. (Ed.), Variational Concepts with Applications to the Mechanics of Materials, IUTAM Bookseries, Springer, 117–130 (2010).

    Chapter  Google Scholar 

  • Kochmann, D. M., Hackl, K.: Influence of hardening on the cyclic behavior of laminate microstructures in finite crystal plasticity. Tech. Mech. 30, 384–400 (2010).

    Google Scholar 

  • Kochmann, D. M., Hackl, K.: The evolution of laminates in finite plasticity: a variational approach. Continuum Mech. Thermodyn. 23, 63–85 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Lambrecht, M., Miehe, C., Dettmar, J.: Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int. J. Sol. Struct. 40, 1369–1391 (2003).

    Article  MATH  Google Scholar 

  • Lukáš, P., Kunz, L., Svoboda, M.: Stress-strain response and fatigue life of copper single crystals cyclically loaded with a positive mean stress. Mat. Sci. Eng. A 272, 31–37 (1999).

    Article  Google Scholar 

  • Miehe, C., Lambrecht, E., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725–2769 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe, C., Schotte, J., Lambrecht, M.: Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J. Mech. Phys. Solids 50, 2123–2167 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on SL(d). In: Newton, P., Weinstein, A., Holmes, P. (Eds.), Geometry, Dynamics, and Mechanics. Springer, Berlin (2002).

    Google Scholar 

  • Mielke, A.: Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comp. Meth. Appl. Mech. Eng. 193, 5095–5127 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke, A., Ortiz, M.: A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM: Control, Optimization and Calculus of Variations 14, 494–516 (2007).

    Article  MathSciNet  Google Scholar 

  • Ortiz, M., Repetto, E. A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J. C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I. Continuum formulation. Comput. Meth. Appl. Mech. Eng. 66, 199–219 (1988a).

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J. C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. II. Computational Aspects. Comput. Meth. Appl. Mech. Eng. 68, 1–31 (1988b).

    Article  MATH  Google Scholar 

  • Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Flügge, S. (ed.), Encyclopedia of Physics III/3, Springer, Berlin (1965).

    Google Scholar 

  • Truskinovsky, L.: Finite Scale Microstructures in Nonlocal Elasticity. J. Elasticity 59, 319–355 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  • Truskinovsky, L., Zanzotto, G.: Finite-scale microstructures and metastability in one-dimensional elasticity. Meccanica 30, 577–589 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  • Young, L. C.: Lectures on the Calculus of Variations and Optimal Control Theory. AMS Chelsea Publications, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Hackl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Hackl, K., Hoppe, U., Kochmann, D.M. (2014). Variational modeling of microstructures in plasticity. In: Schröder, J., Hackl, K. (eds) Plasticity and Beyond. CISM International Centre for Mechanical Sciences, vol 550. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1625-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1625-8_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1624-1

  • Online ISBN: 978-3-7091-1625-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics