Skip to main content
Log in

Genetic Variation within and Between Domesticated Chinook Salmon, Oncorhynchus tshawytscha, Strains and their Progenitor Populations

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Domesticated chinook salmon strains in British Columbia (BC), Canada are believed to have originated primarily from populations of the Big Qualicum (BQ) River and Robertson Creek (RC) on Vancouver Island in the early 1980s. The number of parental fish that gave rise to the domesticated strains and their subsequent breeding history during approximately five ensuing generations of domestication were not documented. Genetic variation at 13 microsatellite loci was examined in samples from two domesticated strains and the two progenitor populations to determine the genetic relationships among them. The domesticated strains had lower allelic diversity and tended to have lower levels of expected heterozygosity than did the BQ and RC progenitor populations. Only three alleles over all 13 loci were detected in the domesticated strains that were not present in the BQ and RC samples, whereas the progenitor strains possessed over 25 (BQ) and 43 (RC) private alleles. Genetic distance and FST values also indicated a closer relationship of the domesticated strains with the BQ than the RC population. One domesticated strain had a significant excess of heterozygosity compared with that expected under conditions of mutation-drift equilibrium, indicative of a recent genetic bottleneck. Genetic differentiation between the domesticated strains was as great as that distinguishing them from the progenitor populations, indicating that the genetic base of domesticated chinook salmon could be increased by hybridization. The existence of genetically distinct domesticated strains of chinook salmon in coastal BC generates the need for an evaluation of potential genetic interactions between domesticated escapees and natural spawning populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F.W. 1986. Genetic drift and the loss of alleles versus heterozygosity. Zoo. Biol. 5: 181–190.

    Article  Google Scholar 

  • Banks, M.A., M.S. Blouin, B.A. Baldwin, V.K. Rashbrook, H.A. Fitzgerald, S.M. Blankenship & D. Hedgecock. 1999. Isolation and inheritance of novel microsatellites in chinook salmon (Oncorhynchus tshawytscha). J. Hered. 90: 281–288.

    Article  CAS  Google Scholar 

  • Banks, M.A., V.K. Rashbrook, M.J. Calavetta, C.A. Dean & D. Hedgecock. 2000. Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhynchus tshawytscha) in California's Central Valley. Can. J. Fish. Aquat. Sci. 57: 915–927.

    Article  CAS  Google Scholar 

  • Beacham, T.D., J.R. Candy, K.J. Supernault, T. Ming, B. Deagle, A. Schultz, D. Tuck, K. Kaukinen, J.R. Irvine, K.M. Miller & R.E. Withler. 2001. Evaluation and application of microsatellite and major histocompatibility complex variation for stock identification of coho salmon in British Columbia. Trans. Am. Fish. Soc. 130: 1116–1155.

    Article  CAS  Google Scholar 

  • Beacham, T.D., K.J. Supernault, M. Wetklo, B. Deagle, K. Labaree, J.R. Irvine, J.R. Candy, K.M. Miller, R.J. Nelson & R.E. Withler. The geographic basis of population structure in Fraser River chinook salmon, Oncorhynchus tshawytscha. Fish. Bull. (in press).

  • Clarke, W.C., R.E. Withler & J.E. Shelbourn. 1994. Inheritance of smolting phenotypes in backcrosses of hybrid stream-type × ocean-type chinook salmon (Oncorhynchus tshawytscha). Estuaries 17: 13–25.

    Google Scholar 

  • Cornuet, J.-M. & G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.

    CAS  Google Scholar 

  • Danielsdottir, A.K., G. Marteinsdottir, F. Arnason & S. Gudjonsson. 1997. Genetic structure of wild and reared Atlantic salmon (Salmo salar L.) populations in Iceland. ICES J. Mar. Sci. 54: 986–997.

    Google Scholar 

  • Devlin, R.H., B.K. McNeil, T.D.D. Groves & E.M. Donaldson. 1991. Isolation of Y-chromosomal DNA probe capable of determining genetic sex in chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 48: 1606–1612.

    CAS  Google Scholar 

  • Devlin, R.H., B.K. McNeil, I.I. Solar & E.M. Donaldson. 1994. A rapid PCR-based test for Y-chromosomal DNA allows simple production of all-female strains of chinook salmon. Aquaculture 128: 211–220.

    Article  CAS  Google Scholar 

  • Estoup, A. & J.-M. Cornuet. 1999. Microsatellite evolution: Inferences from population data. pp. 45–65. In: D.B. Goldstein & C. Schlötterer (ed.) Microsatellites. Evolution and Applications, Oxford University Press, Oxford.

    Google Scholar 

  • Fleming, I.A., K. Hindar, I.B. Mjølnerød, B. Jonsson, T. Balstad & A. Lamberg. 2000. Lifetime success and interactions of farm salmon invading a native population. Proc. R. Soc. Lond. B 267: 1517–1523.

    CAS  Google Scholar 

  • Fleming, I.A., T. Agustsson, B. Finstad, J.I. Johnsson & B.T. Björnsson. 2002. Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 59: 1323–1330.

    Article  CAS  Google Scholar 

  • Frankel, O.H. & M.E. Soulé. 1981. Conservation and Evolution, Cambridge University Press, Cambridge. 327 pp.

    Google Scholar 

  • Franklin, I.A. 1980. Evolutionary change in small populations. pp. 131–150. In: M.E. Soulé & B.A.Wilcox (ed.) Conservation Biology: An Evolutionary-Ecological Perspective, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Gjedrem, T., H.M. Gjøen & B. Gjerde. 1991. Genetic origin of Norwegian farmed Atlantic salmon. Aquaculture 98: 41–50.

    Google Scholar 

  • Gobantes, I., G. Choubert, J.C.G. Milicua & R. Gomez. 1998. Serum carotenoid concentration changes during sexual maturation in farmed rainbowtrout (Oncorhynchus mykiss). J. Agric. Food. Chem. 46: 383–387.

    CAS  Google Scholar 

  • Hansen, M.M., E.E. Nielsen, D.E. Ruzzante, C. Bouza & K.-L.D. Mensberg. 2000. Genetic monitoring of supportive breeding in brown trout (Salmo trutta L.), using microsatellite DNA markers. Can. J. Fish. Aquat. Sci. 57: 2130–2139.

    Article  Google Scholar 

  • Hard, J.J., A.C. Wertheimer & W.F. Johnson. 1989. Geographic variation in the occurrence of red-and white-fleshed chinook salmon (Oncorhynchus tshawytscha) in western North America. Can. J. Fish. Aquat. Sci. 46: 1107–1113.

    Google Scholar 

  • Hedrick, P.W., V.K. Rashbrook & D. Hedgecock. 2000. Effective population size of winter-run chinook salmon based on microsatellite analysis of returning spawners. Can. J. Fish. Aquat. Sci. 57: 2368–2373.

    Article  Google Scholar 

  • Hunter, G.A., E.M. Donaldson, F.W. Goetz & P.R. Edgell. 1982. Production of all-female and sterile coho salmon, and experimental evidence for male heterogamety. Trans. Am. Fish. Soc. 111: 367–372.

    Article  Google Scholar 

  • Hunter, G.A., E.M. Donaldson, J. Stoss & I. Baker. 1983. Production of monosex female groups of chinook salmon (Oncorhynchus tshawytscha) by the fertilization of normal ova with sperm from sex-reversed females. Aquaculture 33: 355–364.

    Article  Google Scholar 

  • Luikart, G., F.W. Allendorf, J.-M. Cornuet & W.B. Sherwin. 1998. Distortion of allele frequency distributions provided a test for recent population bottlenecks. J. Hered. 89: 238–247.

    Article  CAS  Google Scholar 

  • Luikart, G. & J.-M. Cornuet. 1999. Estimating the effective number of breeders from heterozygote excess in progeny. Genetics 151: 1211–1216.

    CAS  Google Scholar 

  • Marshall, H.D. & K. Ritland. 2002. Genetic diversity and differentiation of Kermode bear populations. Mol. Ecol. 11: 685–697.

    Article  CAS  Google Scholar 

  • Mjølnerød, I.B., U.H. Refseth, E. Karlsen, T. Balstad, K.S. Jakobsen & K. Hindar. 1997. Genetic differences between two wild and one farmed population of Atlantic salmon (Salmo salar) revealed by three classes of genetic markers. Hereditas 127: 239–248.

    Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nei, M., T. Maruyama & R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Google Scholar 

  • Nelson, R.J. & T.D. Beacham. 1999. Isolation and cross species amplification of microsatellite loci useful for study of Pacific salmon. Anim. Genet. 30: 228–229.

    Article  CAS  Google Scholar 

  • Nelson, R.J., M.P. Small, T.D. Beacham & K.J. Supernault. 2001. Population structure of Fraser River chinook salmon (Oncorhynchus tshawytscha): An analysis using microsatellite DNA markers. Fish. Bull. 99: 94–107.

    Google Scholar 

  • Norris, A.T., D.G. Bradley & E.P. Cunningham. 1999. Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 180: 247–264.

    Article  Google Scholar 

  • O'Connell, M., R.G. Danzmann, J.-M. Cornuet, J.M. Wright & M.M. Ferguson. 1997. Differentiation of rainbow trout (Oncorhynchus mykiss) populations in Lake Ontario and the evaluation of the stepwise mutation and infinite allele mutation models using microsatellite variability. Can. J. Fish. Aquat. Sci. 54: 1391–1399.

    Article  Google Scholar 

  • Olsen, J.B., P. Bentzen & J.E. Seeb. 1998. Characterization of seven microsatellite loci derived from pink salmon. Mol. Ecol. 7: 1083–1090.

    Google Scholar 

  • O'Reilly, P.T., L.C. Hamilton, S.K. McConnell & J.M. Wright. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 53: 2292–2298.

    Article  Google Scholar 

  • Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Google Scholar 

  • Weir, B.S. & C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Google Scholar 

  • Wilson, I.F., E.A. Bourke & T.F. Cross. 1995. Genetic variation at traditional and novel allozyme loci, applied to interactions between wild and reared Salmo salar L. (Atlantic salmon). Hereditas 75: 578–588.

    CAS  Google Scholar 

  • Withler, R.E., K.D. Le, R.J. Nelson, K.M. Miller & T.D. Beacham. 2000. Intact genetic structure and high levels of genetic diversity in bottlenecked sockeye salmon (Oncorhynchus nerka) populations of the Fraser River, British Columbia, Canada. Can. J. Fish. Aquat. Sci. 57: 1985–1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly M. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eun Kim, J., Withler, R.E., Ritland, C. et al. Genetic Variation within and Between Domesticated Chinook Salmon, Oncorhynchus tshawytscha, Strains and their Progenitor Populations. Environmental Biology of Fishes 69, 371–378 (2004). https://doi.org/10.1023/B:EBFI.0000022891.83210.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EBFI.0000022891.83210.2e

Navigation