Skip to main content
Log in

Different effect of dioptric defocus vs. light scatter on the Pattern Electroretinogram (PERG)

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

To assess the quantitative effect of optical deficiencies on the Pattern Electroretinogram (PERG), we degraded the optical imaging onto the retina by dioptric defocus (+1.75–5 D), and by scatter transparencies. With optimal and degraded optics we measured the visual acuity and the steady-state PERG, evoked by checkerboards (check size 0.2–16°), and flash stimuli. When the two optical degradation methods were equated for acuity, scatter transparencies reduced the PERG amplitude more than defocus. For scatter transparencies, there was a significant (p< 0.001) effect at 16°, escalating for smaller checks. For defocus, significant effects were only observed for check sizes of 1.6° and smaller. We explain the differences between the two blur techniques by their differing angular scattering functions. Dioptrical defocus leads to an underestimation of the effect of media opacities on the PERG. For the clinically relevant check size of 0.8°, halving acuity reduces the amplitude by 15% with defocus and by 30% with scatter. With an acuity of 0.8 or higher, no clinically relevant effect of suboptimal refraction is seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groneberg A, Teping C. Topodiagnostik von Sehstörungen durch Ableitungretinaler und kortikaler Antworten auf Umkehr-Kontrastmuster. Ber Dtsch Ophthalmol Ges 1980 77:409–15.

    Google Scholar 

  2. Maffei L, Fiorentini A. Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 1981 211:953–4.

    Google Scholar 

  3. Harrison JM, O 'Connor PS, Young RSL, Kincaid M, Bentley R. The pattern ERG in man following surgical resection of the optic nerve. Invest Ophthalmol Vis Sci 1987 28:492–9.

    Google Scholar 

  4. Hess RF, Baker CL. Human pattern-evoked electroretinogram. J Neurophysiol 1984 51:939–51.

    Google Scholar 

  5. Zrenner E. Physiological basis of the pattern electroretinogram. Progr Retin Res 1989 9:427–64.

    Google Scholar 

  6. Bach M, Gerling J, Geiger K. Optic atrophy reduces the pattern-electroretinogram for both fine and coarse stimulus patterns. Clin Vision Sci 1992 7:327–33.

    Google Scholar 

  7. Wanger P, Persson HE. Pattern-reversal electroretinograms in ocular hypertension. Doc Ophthalmol 1985 61:27–31.

    Google Scholar 

  8. Papst N, Bopp M, Schnaudigel OE. The pattern evoked electroretinogram associated with elevated intraocular pressure. Graefe 's Arch Clin Exp Ophthalmol 1984 222:34–7.

    Google Scholar 

  9. Porciatti V, Falsini B, Brunori S, Colotto A, Moretti G. Pattern electroretinogram as a function of spatial frequency in ocular hypertension and early glaucoma. Doc Ophthalmol 1987 65:349–55.

    Google Scholar 

  10. Bach M, Hiss P, Röver J. Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol 1988 69:315–22.

    Google Scholar 

  11. Price MJ, Drance SM, Price M, Schulzer M, Douglas GR, Tansley B. The pattern electroretinogram and visual-evoked potential in glaucoma. Graefes Arch Clin Exp Ophthalmol 1988 226:542–7.

    Google Scholar 

  12. Trick GL, Bicklerbluth M, Cooper DG, Kolker AE, Nesher R. Pattern reversal electroretinogram (PRERG)abnormalities in ccular hypertension-Correlation with glaucoma risk factors. Curr Eye Res 1988 7:201–6.

    Google Scholar 

  13. Weinstein GW, Arden GB, Hitchings RA, Ryan S, Calthorpe CM, Odom V. The pattern electroretinogram (PERG) in ocular hypertension and glaucoma. Arch Ophthalmol 1988 106:923–8.

    Google Scholar 

  14. Bach M, Speidel-Fiaux A. Pattern electroretinogram in glaucoma and ocular hypertension. Doc Ophthalmol 1989 73:173–81.

    Google Scholar 

  15. Korth M, Horn F, Storck B, Jonas J. The pattern evoked electroretinogram (PERG):Age-related alterations and.105 changes in glaucoma. Graefes Arch clin exp Ophthal 1989 227:123–30.

    Google Scholar 

  16. Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA. Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 2002 43:2213–20.

    Google Scholar 

  17. Parisi V, Manni G, Centofanti M, Gandol SA, Olzi D, Bucci MG. Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology 2001 108:905–12.

    Google Scholar 

  18. Bach M. Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 2001 11 Suppl 2:S41–9.

    Google Scholar 

  19. Pfeiffer N, Tillmon B, Bach M. Predictive value of the Pattern Electroretinogram in high-risk ocular hypertension. Invest Ophthalmol Vis Sci 1993 34:1710–5.

    Google Scholar 

  20. Maddess T, James AC, GoldbergI, Wine S, Dobinson J. Comparinga parallel PERG, automated perimetry, and frequency-doubling thresholds. Invest Ophthalmol Vis Sci 2000 41:3827–32.

    Google Scholar 

  21. Bayer AU, MaagKP, Erb C. Detection of optic neuropathy in glaucomatous eyes with normal standard visual elds using a test battery of short-wavelength automated perimetry and pattern electroretinography. Ophthalmology 2002 109:1350–61.

    Google Scholar 

  22. Unsoeld AS, Walter S, Meyer J, Funk J, Bach M. Pattern ERG as early risk indicator in ocular hypertension-an 9-year prospective study. Invest Ophthalmol Vis Sci 2001 42:S146 (780).

    Google Scholar 

  23. Holder GE. Significance of abnormal pattern electroretinography in anterior visual pathway dysfunction. Br J Ophthalmol 1987 71:166–71.

    Google Scholar 

  24. Holder GE. Pattern electroretinography (PERG)and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 2001 20:531–61.

    Google Scholar 

  25. Drasdo N, Thompson DA, Thompson CM, Edwards L. Complementary components and local variations of the pattern electroretinogram. Invest Ophthalmol Vis Sci 1987 28:158–62.

    Google Scholar 

  26. van den Berg TJ, Boltjes B. The point-spread function of the eye from 0–100 and the pattern electroretinogram. Doc Ophthalmol 1987 67:347–54.

    Google Scholar 

  27. Odom JV, Maida TM, Dawson WW. Pattern evoked retinal response (PERR)in human:effects of spatial frequency, temporal frequency, luminance and defocus. Curr Eye Res 1982 2:99–108.

    Google Scholar 

  28. Siegel MJ, Marx MS, Bodis-Wollner I, Podos SM. The effect of refractive error on pattern electroretinograms in primates. Curr Eye Res 1986 5:183–7.

    Google Scholar 

  29. Leipert KP, Gottlob I. Pattern electroretinogram: effects of miosis, accommodation, and defocus. Doc Ophthalmol 1987 67:335–346.

    Google Scholar 

  30. Lovasik JV, Konietzny EA. The effect of retinal image quality on steady state pattern ERGs and VEPs. Clin Vision Sci 1989 4:41–50.

    Google Scholar 

  31. Prager TC, Schweitzer FC, Peacock LW, Garcia CA. The effect of optical defocus on the pattern electroretinogram in normal subjects and patients with Alzheimer 's disease. Am J Ophthalmol 1993 116:363–9.

    Google Scholar 

  32. Ver Hoeve JN, Danilov YP, Kim CB, Spear PD. VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 1999 16:607–17.

    Google Scholar 

  33. Marmor MF, Gawande A. Effect of visual blur on contrast sensitivity.Clinical implications. Ophthalmology 1988 95:139–43.

    Google Scholar 

  34. Bach M, Mathieu M. Pattern-ERG differentially affected by dioptric defocus and light scatter. Invest Ophthalmol Vis Sci 1997 38:S573 (#2673).

    Google Scholar 

  35. World Medical Association. Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 2000 284:3043–45.

    Google Scholar 

  36. Bach M. The FreiburgVisual Acuity Test-Automatic measurement of visual acuity. Optometry Vision Sci 1996 73:49–53.

    Google Scholar 

  37. Bach M. FreiburgVisual Acuity &Contrast Test ('FrACT '). 2002 http://www.michaelbach.de/fract.html (08.04.2003).

  38. Wesemann W. Visual acuity measured via the Freiburg visual acuity test (FVT), Bailey Lovie chart and Landolt Ringchart. Klin Monatsbl Augenheilkd 2002 219:660–7.

    Google Scholar 

  39. Lieberman HR, Pentland AP. Microcomputer-based estimation of psychophysical thresholds: The best PEST. Behaviour Research Methods and Instrumtation 1982 14:21–5.

    Google Scholar 

  40. Bach M, Kommerell G. Determining visual acuity using European normal values: scientific principles and possibilities for automatic measurement. Klin Monatsbl Augenheilkd 1998 212:190–5.

    Google Scholar 

  41. Bach M, Kommerell G. Determiningvisual acuity using European normal values: scientific principles and possibilities for automatic measurement.1998 http://www.ukl.unifreiburg.de/aug/bach/ops/visus98/index.html (08.04.2003).

  42. Walsh G, Charman WN. The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating. Ophthal Physiol Opt 1989 9:398–04.

    Google Scholar 

  43. Charman WN. Night myopia and driving. Ophthalmic Physiol Opt 1996 16:474–85.

    Google Scholar 

  44. Dawson WW, Trick GL, Litzkow CA. Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 1979 18:988–91.

    Google Scholar 

  45. Thompson DA, Drasdo N. An improved method for usingthe DTL bre in electroretinography. Ophthal Physiol Opt 1987 7:315–9.

    Google Scholar 

  46. Bach M. Preparation and Montage of DTL-Electrodes.1998 http://www.ukl.uni-freiburg.de/aug/bach/ops/dtl/index.html (09.02.2001).

  47. Bach M. FreiburgEvoked Potentials. 2000 http://www.ukl. uni-freiburg.de/aug/bach/ep2000/(09.02.2001).

  48. Bach M, Meigen T. Do 's and don 'ts in Fourier analysis of steady-state potentials. Doc Ophthalmol 1999 99:69–82.

    Google Scholar 

  49. Bach M. Do's and don'ts in Fourier analysis of steady-state potentials.1999 http://www.ukl.uni-freiburg.de/aug/bach/ ops/fou/index.html (08.04.2003).

  50. Bach M, Hawlina M, Holder GE, Marmor MF, Meigen T, Vaegan, Miyake Y. Standard for pattern electroretinography. Doc Ophthalmol 2000 101:11–8.

    Google Scholar 

  51. Harding GF, Odom JV, Spileers W, Spekreijse H. Standard for visual evoked potentials 1995.The International Society for Clinical Electrophysiology of Vision. Vision Res 1996 36:3567–72.

    Google Scholar 

  52. Chan C, Smith G, Jacobs RJ. Simulating refractive errors: source and observer methods. Am J Optom Physiol Opt 1985 62:207–16

    Google Scholar 

  53. Thompson D, Drasdo N. The effect of stimulus contrast on the latency and amplitude of the pattern electroretinogram. Vision Res 1989 29:309–13.

    Google Scholar 

  54. Zapf HR, Bach M. The contrast characteristic of the pattern electroretinogram depends on temporal frequency. Graefes Arch Clin Exp Ophthalmol 1999 237:93–9.

    Google Scholar 

  55. Hess R, Woo G. Vision through cataracts. Invest Ophthalmol Vis Sci 1978 17:428–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, M., Mathieu, M. Different effect of dioptric defocus vs. light scatter on the Pattern Electroretinogram (PERG). Doc Ophthalmol 108, 99–106 (2004). https://doi.org/10.1023/B:DOOP.0000018415.00285.56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:DOOP.0000018415.00285.56

Navigation