Skip to main content
Log in

Molecular Mobility in a Poly(ethylene glycol)–Poly(vinyl pyrrolidone) Blends: Study by the Pulsed Gradient NMR Techniques

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The molecular mobility in PEG–PVP blends as a function of the time of system storage and the PVP molecular mass is studied by the pulsed-field gradient NMR method. The distribution of PEG molecules over their mobilities is found in a blend containing 36 vol % of PEG with the molecular mass of 400 g/mol. As the storage time of the system increases, the spectrum of diffusion coefficient values varies, thereby indicating the redistribution of PEG400 molecules in the blend with PVP. An anomalous (partly restricted) diffusion of PEG400 molecules is discovered, reflecting the influence of PVP macromolecules on the motion of short PEG chains. It is shown that, during the redistribution of PEG molecules in the blend, they are involved in a complex with PVP, which is characterized by its own transport properties. The data obtained by the NMR relaxation technique are in agreement with the results of NMR diffusion measurements in the studied systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Polymer Blends, Paul, D.R. and Newman, S., Eds., New York: Academic, 1978, vol. 1.

  2. Feldstein, M.M., Shandryuk, G.A., Kuptsov, S.A., and Platé, N.A., Polymer, 2000, vol. 41, p. 5327.

    Google Scholar 

  3. Feldstein, M.M., Kuptsov, S.A., and Shandryuk, G.A., Polymer, 2000, vol. 41, p. 5339.

    Google Scholar 

  4. Feldstein, M.M., Kuptsov, S.A., Shandryuk, G.A., et al., Polymer, 2000, vol. 41, p. 5349.

    Google Scholar 

  5. Cesteros, L.C., Quintana, J.R., Fernandez, J.A., and Katime, I.A., J. Polym. Sci., Part B: Polym. Phys., 1989, vol. 27, p. 2567.

    Google Scholar 

  6. Feldstein, M.M. and Bairamov, D.F., Polym. Mater. Sci. Eng., 2000, vol. 82, p. 365.

    Google Scholar 

  7. Feldstein, M.M., Polymer, 2001, vol. 42, p. 7719.

    Google Scholar 

  8. Feldstein, M.M., Kuptsov, S.A., Shandryuk, G.A., and Platé, N.A., Polymer, 2001, vol. 42, p. 981.

    Google Scholar 

  9. Fel'dshtein, M.M., Lebedeva, T.L., Shandryuk, G.A., et al., Vysokomol. Soedin., Ser. A, 1999, vol. 41, no. 8, p. 1316.

    Google Scholar 

  10. Chalykh, A.A., Chalykh, A.E., and Feldstein, M.M., Polym. Mater. Sci. Eng., 1999, vol. 81, p. 456.

    Google Scholar 

  11. Skirda, V.D., Doroginitzkij, M.M., Sundukov, V.I., et al., Makromol. Chem., Rapid Commun., 1988, vol. 9, p. 603.

    Google Scholar 

  12. Gafurov, I.R., Skirda, V.D., Maklakov, A.I., et al., Vysokomol. Soedin., Ser. A, 1989, vol. 31, p. 269.

    Google Scholar 

  13. Gafurov, I.R., Skirda, V.D., Maklakov, A.I., and Riskina, I.I., Vysokomol. Soedin., Ser. A, 1988, vol. 30, p. 1551.

    Google Scholar 

  14. Fleischer, G., Rittig, F., and Konak, C., J. Polym. Sci., Part B: Polym. Phys., 1998, vol. 36, p. 2931.

    Google Scholar 

  15. Skirda, V.D., Aslanyan, I.Yu., Philippova, O.E., et al., Macromol. Chem. Phys., 1999, vol. 200, p. 2152.

    Google Scholar 

  16. Vartapetyan, R.Sh., Khozina, E.V., Karger, J., et al., Colloid Polym. Sci., 2001, vol. 279, p. 532.

    Google Scholar 

  17. Karger, J., Bar, N.-K., Heink, W., et al., Z. Naturforsch., A: Phys. Sci., 1995, vol. 50, p. 186.

    Google Scholar 

  18. Karger, J., Pfeifer, H., and Heink, W., Adv. Magn. Reson., 1988, vol. 12, p. 1.

    Google Scholar 

  19. Tanner, J.E. and Stejskal, E.O., J. Chem. Phys., 1965, vol. 42, p. 2888.

    Google Scholar 

  20. Karger, J. and Heink, W., J. Magn. Reson., 1983, vol. 51, p. 1.

    Google Scholar 

  21. Maklakov, A.I., Skirda, V.D., and Fatkullin, N.F., Samodiffuziya v rastvorakh i rasplavakh polimerov (Self-Diffusion in Polymer Solutions and Melts), Kazan: Kazan. Gos. Univ., 1987.

    Google Scholar 

  22. Levitt, M.H. and Freeman, R., J. Magn. Reson., 1981, vol. 43, p. 65.

    Google Scholar 

  23. Carr, H.Y. and Purcell, E.M., Phys. Rev., 1954, vol. 94, p. 630.

    Google Scholar 

  24. Meiboom, S. and Gill, D., Rev. Sci. Instrum., 1958, vol. 29, p. 6881.

    Google Scholar 

  25. Idiyatullin, D.Sh., Skirda, V.D., and Smirnov, V.S., USSR Inventor's Certificate no. 1 578 608, Byull. Isobret., 1990, p. 9854.

  26. Fel'dshtein, M.M., Zezin, A.B., and Kabanov, V.A., Mol. Biol. (Moscow), 1974, vol. 8, no. 2, p. 218.

    Google Scholar 

  27. Abragam, A. and Goldman, M., Nuclear Magnetism: Order and Disorder, Oxford: Clarendon, 1982.

    Google Scholar 

  28. Tanner, J.E. and Stejskal, E.O., J. Chem. Phys., 1968, vol. 49, p. 1768.

    Google Scholar 

  29. Hurlimann, M.D., Helmer, K.G., De Swiet, T.M., et al., J. Magn. Reson., Ser. A, 1995, vol. 113, p. 260.

    Google Scholar 

  30. Callaghan, P.T. and Codd, S.L., Magn. Reson. Imaging, 1998, vol. 16, p. 471.

    Google Scholar 

  31. Mitra, P.P., Sen, P.N., and Schwartz, L.M., Phys. Rev. B: Condens. Matter, 1993, vol. 47, p. 8565.

    Google Scholar 

  32. Mackie, S. and Meares, P., Proc. R. Soc. London, A, 1955, vol. 132, p. 485.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vartapetyan, R.S., Khozina, E.V., Chalykh, A.E. et al. Molecular Mobility in a Poly(ethylene glycol)–Poly(vinyl pyrrolidone) Blends: Study by the Pulsed Gradient NMR Techniques. Colloid Journal 65, 684–690 (2003). https://doi.org/10.1023/B:COLL.0000009110.62943.b2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COLL.0000009110.62943.b2

Keywords

Navigation