Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 81))

  • 873 Accesses

Abstract

This contribution presents a thermodynamically sound approach to model temperature sensitive diffusion in multi-phase solids. In order to describe the phenomena of thermal diffusion (thermophoresis) and to simulate the effect numerically, an extended version of the Cahn-Hilliard phase-field model is combined with the heat-diffusion equation. The derived model is formulated consistently with the basic laws of thermodynamics. Its discretized version is embedded in a NURBS-based finite element framework. Numerical simulations and a comparison to experimental results show the effect of thermal diffusion, induced by non-uniform and non-steady temperature fields, on the microstructural evolution of a binary polymer blend consisting of polydimethylsiloxane and polyethylmethylsiloxane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anders, D., & Weinberg, K. (2011). A variational approach to the decomposition of unstable viscous fluids and its consistent numerical approximation. ZAMM—Zeitschrift für angewandte Mathematik und Mechanik, 91(8), 609–629.

    Article  MathSciNet  MATH  Google Scholar 

  2. Anders, D., & Weinberg, W. (2012). Thermophoresis in binary blends. Mechanics of Materials, 47, 33–50.

    Article  Google Scholar 

  3. Anders, D., Reichert, R., & Weinberg, K. (2011). Isogeometric analysis of thermal diffusion in binary blends. Computational Materials Science, 52(1), 182–188.

    Article  Google Scholar 

  4. Anders, D., Hoffmann, A., Scheffler, H.-P., & Weinberg, K. (2011). Application of operator-scaling anisotropic random fields to binary mixtures. Philosophical Magazine, 91(29), 3766–3792.

    Article  Google Scholar 

  5. Baaske, P., Wienken, C. J., Reineck, P., Duhr, S., & Braun, D. (2010). Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angewandte Chemie International Edition, 49, 2238–2241.

    Article  Google Scholar 

  6. Baumgärtner, A., & Heermann, D. W. (1986). Spinodal decomposition of polymer films. Polymer, 27(11), 1777–1780.

    Article  Google Scholar 

  7. Cahn, J. W. (1961). On spinodal decomposition. Acta Metallurgica, 9(9), 795–801.

    Article  Google Scholar 

  8. Cimmelli, V. A., Jou, D., Ruggeri, T., & Ván, P. (2014). Entropy principle and recent results in non-equilibrium theories. Entropy, 16(3), 1756.

    Article  MathSciNet  MATH  Google Scholar 

  9. de Gennes, P. G. (1980). Dynamics of fluctuations and spinodal decomposition in polymer blends. Journal of Chemical Physics, 72(9), 4756–4763.

    Article  MathSciNet  MATH  Google Scholar 

  10. de Groot, S. R., & Mazur, P. (1962). Non-equilibrium thermodynamics. Amsterdam: North-Holland.

    MATH  Google Scholar 

  11. Enge, W., & Köhler, W. (2004). Thermal diffusion in a critical polymer blend. Physical Chemistry Chemical Physics, 6, 2373–2378.

    Article  Google Scholar 

  12. Flory, P. J. (1942). Thermodynamics of high polymer solutions. Journal of Chemical Physics, 10(1), 51–61.

    Article  Google Scholar 

  13. Hashimoto, T., Kumaki, J., & Kawai, H. (1983). Time-resolved light scattering studies on kinetics of phase separation and phase dissolution of polymer blends. 1. Kinetics of phase separation of a binary mixture of polystyrene and poly(vinyl methyl ether). Macromolecules, 16(4), 641–648.

    Article  Google Scholar 

  14. Hesch, C., Schuß, S., Dittmann, M., Franke, M., & Weinberg, K. (2016). Isogeometric analysis and hierarchical refinement for higher-order phase-field models. Computer Methods in Applied Mechanics and Engineering, 303, 185–207.

    Article  MathSciNet  Google Scholar 

  15. Huggins, M. L. (1942). Theory of solutions of high polymers. Journal of the American Chemical Society, 64(7), 1712–1719.

    Article  Google Scholar 

  16. Itskov, M. (2007). Tensor algebra and tensor analysis for engineers (with applications to continuum mechanics). Berlin: Springer.

    MATH  Google Scholar 

  17. Krekhov, A. P., & Kramer, L. (2004). Phase separation in the presence of spatially periodic forcing. Physical Review E, 70, 061801.

    Article  Google Scholar 

  18. Lebon, G., Jou, D., & Casas-Vázquez, J. (2007). Understanding non-equilibrium thermodynamics. In Foundations, Applications, Frontiers. Springer: Berlin.

    Google Scholar 

  19. Lee, K.-W. D., Chan, P. K., & Feng, X. (2002). A computational study of the thermal-induced phase separation phenomenon in polymer solutions under a temperature gradient. Macromolecular Theory and Simulations, 11, 996–1005.

    Article  Google Scholar 

  20. Lee, K.-W. D., Chan, P. K., & Feng, X. (2003). A computational study of the polymerization-induced phase separation phenomenon in polymer solutions under a temperature gradient. Macromolecular Theory and Simulations, 12(6), 413–424.

    Article  Google Scholar 

  21. Lee, K.-W. D., Chan, P. K., & Feng, X. (2004). Morphology development and characterization of the phase-separated structure resulting from the thermal-induced phase separation phenomenon in polymer solutions under a temperature gradient. Chemical Engineering Science, 59(7), 1491–1504.

    Article  Google Scholar 

  22. Strobl, G. R. (1985). Structure evolution during spinodal decomposition of polymer blends. Macromolecules, 18(3), 558–563.

    Article  Google Scholar 

  23. Thamdrup, L. H., Larsen, N. B., & Kristensen, A. (2010). Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels. Nano Letters, 10(2), 826–832.

    Article  Google Scholar 

  24. Voit, A. (2007). Photothermische Strukturierung binärer Polymermischungen. Ph.D. thesis, University of Bayreuth.

    Google Scholar 

  25. Voit, A., Krekhov, A., Enge, W., Kramer, L., & Köhler, W. (2005). Thermal patterning of a critical polymer blend. Physical Review Letters, 94, 214501.

    Article  Google Scholar 

  26. Voit, A., Krekhov, A., & Köhler, W. (2007). Quenching a UCST polymer blend into phase separation by local heating. Macromolecules, 40, 9–11.

    Article  Google Scholar 

  27. Würger, A. (2007). Das Salz in der DNA-Suppe. Physik Journal, 7(22–24), 2014.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) under the grants WE2525/2-3, WE2525/4-1 and WE2525/8-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Weinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weinberg, K., Schuß, S., Anders, D. (2016). Thermal Diffusion in a Polymer Blend. In: Weinberg, K., Pandolfi, A. (eds) Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems. Lecture Notes in Applied and Computational Mechanics, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-319-39022-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39022-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39021-5

  • Online ISBN: 978-3-319-39022-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics