Skip to main content
Log in

Elevated transcript level of hyaluronan synthase1 gene correlates with poor prognosis of human colon cancer

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Hyaluronan plays important roles in the complex processes of tumor invasion and metastasis. It is now known that three hyaluronan synthase (HAS) isoforms catalyze hyaluronan synthesis, which raises the question of how they are involved in malignant tumor progression. In this study, we examined the correlation between tumor progression and transcriptional levels of three HAS isoforms in specimens of human colon cancers. Tumor tissues from 31 patients with different diagnostic grades were assessed to determine the level of each HAS isoform by real time RT-PCR. The mean expression coefficients for HAS1, HAS2 and HAS3 in the cancerous parts were 0.82-, 0.91- and 1.22-fold, respectively; of those in the noncancerous parts at Dukes' stage A; 1.00-, 0.95- and 1.06-fold, respectively, at stage B; and 1.95-, 1.16- and 1.19-fold, respectively, at stage C. In survival analysis, a significant correlation was observed between poor survival and the HAS1 transcript level. When the ratio of tumor to normal tissue in the HAS1 level was compared with that of the HA receptor transcript level, there was a positive correlation with that of the CD44 variant 6 level at Dukes' stage C. Our current results therefore suggest that HAS1 plays a role in the malignant progression of human colon cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laurent TC, Fraser JR. Hyaluronan. FASEB J 1992; 6: 2397–404.

    CAS  PubMed  Google Scholar 

  2. Toole BP. Proteoglycans and hyaluronan in morphogenesis and differentiation. In Hey ED (<nt>ed</nt>): Cell Biology of the Extracellular Matrix. New York: Plenum Publishing 1980; 259–94.

    Google Scholar 

  3. Turley EA. The role of a cell-associated hyaluronan-binding protein in fibroblast behaviour. In Whelan J (<nt>ed</nt>): The Biology of Hyaluronan, Ciba Foudation Symposium 143. New York: Wiley 1989; 121–37.

    Google Scholar 

  4. Toole BP. Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 1990; 2: 839–44.

    Article  CAS  PubMed  Google Scholar 

  5. Ropponen K, Tammi M, Parkkinen J et al. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res 1998; 58: 342–7.

    CAS  PubMed  Google Scholar 

  6. Llaneza A, Vizoso F, Rodriguez JC et al. Hyaluronic acid as prognostic marker in resectable colorectal cancer. Br J Surg 2000; 87: 1690–6.

    Article  CAS  PubMed  Google Scholar 

  7. Lokeshwar VB, Rubinowiez D, Schroeder GL et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer J Biol Chem 2001; 276: 11922–32.

    Article  CAS  PubMed  Google Scholar 

  8. Hiltunen ELJ, Anttila M, Kultti A et al. Elevated hyaluronan concentration without hyaluronidase activation in malignant epithelial ovarian tumors. Cancer Res 2002; 62: 6410–3.

    CAS  PubMed  Google Scholar 

  9. Wielenga VJM, Heider K, Offerhaus JA et al. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 1993; 53: 4754–6.

    CAS  PubMed  Google Scholar 

  10. Koopman G, Hieder KH, Horst E et al. Activated human lymphocytes and aggressive non-Hodgkin's lymphomas express a homologue of the metastasis associated variant of CD44. J Exp Med 1993; 177; 879–904.

    Article  Google Scholar 

  11. Kaufmann M, Heider KH, Sinn HP et al. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet 1995; 345: 615–9.

    Article  CAS  PubMed  Google Scholar 

  12. Abetamann V, Kern HF, Elsasser HP. Differential expression of the hyaluronan receptors CD44 and RHAMMin human pancreatic cancer cells. Clin Cancer Res 1996; 2: 1607–18.

    CAS  PubMed  Google Scholar 

  13. Turley EA. Hyaluronan and cell locomotion. Cancer Metast Rev 1992; 11: 21–30.

    CAS  Google Scholar 

  14. Knudson W. Tumor-associated hyaluronan providing an extracellular matrix that facilitates invasion. Am J Pathol 1996; 148: 1721–6.

    CAS  PubMed  Google Scholar 

  15. Weigel PH, Hascall VC, Tammi M. Hyaluronan synthases. J Biol Chem 1997; 272: 13997–14000.

    Article  CAS  PubMed  Google Scholar 

  16. Itano N, Kimata K. Hyaluronan synthase: New directions for hyaluronan research. Trends Glycosci Glycotechnol 1998; 10: 23–38.

    CAS  Google Scholar 

  17. Spicer AP, Nguyen TK. Mammalian hyaluronan synthases: investigation of functional relationships in vivo. Biochem Soc Trans 1999; 27: 109–15.

    CAS  PubMed  Google Scholar 

  18. Spicer AP, McDonald JA. Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J Biol Chem 1998; 273: 1923–32.

    CAS  PubMed  Google Scholar 

  19. Itano N, Sawai T, Yoshida M et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 1999; 274: 25085–92.

    Article  CAS  PubMed  Google Scholar 

  20. Kosaki R, Watanabe K, Yamaguchi Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorageindependent growth and tumorigenicity. Cancer Res 1999; 59: 1141–5.

    CAS  PubMed  Google Scholar 

  21. Itano N, Sawai T, Miyaishi O et al. Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res 1999; 59: 2499–504.

    CAS  PubMed  Google Scholar 

  22. Ichikawa T, Itano N, Sawai T et al. Increased synthesis of hyaluronate enhances motility of human melanoma cells. J Invest Dermatol 1999; 113: 953–9.

    Article  Google Scholar 

  23. Liu N, Gao F, Han Z et al. Hyaluronan synthase 3 overexpression promotes the growth of TSU prostate cancer cells. Cancer Res 2001; 61: 5207–14.

    CAS  PubMed  Google Scholar 

  24. Li Y, Heldin P. Hyaluronan production increases the malignant properties of mesothelioma cells. Br J Cancer 2001; 85: 600–7.

    Article  CAS  PubMed  Google Scholar 

  25. Simpson MA, Wilson CM, Furcht L et al. Manipulation of hyaluronan synthase expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells. J Biol Chem 2002; 277: 10050–7.

    Article  CAS  PubMed  Google Scholar 

  26. Enegd B, King JA, Stylli S et al. Overexpression of hyaluronan synthase-2 reduces the tumorigenic potential of glioma cells lacking hyaluronidase activity. Neurosurgery 2002; 50: 1311–8.

    PubMed  Google Scholar 

  27. Jacobson A, Rahmanian M, Rubin K et al. Expression of hyaluronan synthase 2 or hyaluronidase 1 differentially affect the growth rate of transplantable colon carcinoma cell tumors. Int J Cancer 2002; 102: 212–9.

    Article  CAS  PubMed  Google Scholar 

  28. Itano N, Atsumi F, Sawai T et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci USA 2002; 99: 3609–14.

    Article  CAS  PubMed  Google Scholar 

  29. Turnbull RB, Kyle K, Watson FB et al. Cancer of the colon: The influence of the no-touch isolation technique on survival rates. Ann Surg 1967; 166: 400–27.

    Google Scholar 

  30. Itano N, Kimata K. Molecular cloning of human hyaluronan synthase. Biochem Biophys Res Commun 1996; 222: 816–20.

    Article  CAS  PubMed  Google Scholar 

  31. Sugiyama Y, Shimada A, Sayo T et al. Putative hyaluronan synthase mRNA are expressed in mouse skin and TGF-beta upregulates their expression in cultured human skin cells. J Invest Dermatol 1998; 110: 116–21.

    Article  CAS  PubMed  Google Scholar 

  32. Jacobson A, Brinck J, Briskin MJ et al. Expression of human hyaluronan synthases in response to external stimuli. Biochem J 2000; 348 Pt 1: 29–35.

    CAS  PubMed  Google Scholar 

  33. Pienimaki JP, Rilla K, Fulop C et al. Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan. J Biol Chem 2001; 276: 20428–35.

    Article  CAS  PubMed  Google Scholar 

  34. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996; 87: 159–70.

    Article  CAS  PubMed  Google Scholar 

  35. Fearon ER, Vogelstein B. Agenetic model for colorectal tumorigenesis. Cell 1990; 61: 759–67.

    Article  CAS  PubMed  Google Scholar 

  36. Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell 1992; 70: 523–6.

    Article  CAS  PubMed  Google Scholar 

  37. Yamada Y, Itano N, Zako M et al. The gene structure and promoter sequence of mouse hyaluronan synthase 1. Biochem J 1998; 330 Pt 3: 1223–7.

    CAS  PubMed  Google Scholar 

  38. Levine AJ, Momand J, Finlay CA. The p53 tumour suppresser gene. Nature 1991; 351: 453–6.

    Article  CAS  PubMed  Google Scholar 

  39. Harada H, Kitagawa M, Tanaka N et al. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and-2. Science 1993; 259: 971–4.

    CAS  PubMed  Google Scholar 

  40. Yim JH, Wu SJ, Casey MJ et al. IFN regulatory factor-1 gene transfer into an aggressive, nonimmunogenic sarcoma suppresses the malignant phenotype and enhances immunogenicity in syngenic mice. J Immunol 1997; 158: 1284–92.

    CAS  PubMed  Google Scholar 

  41. Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem 2002; 277: 4589–92.

    Article  CAS  PubMed  Google Scholar 

  42. Hall CL, Yang B, Yang X et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras tranformation. Cell 1995; 82: 19–28.

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Thor AD, Moore II DH et al. The Overexpression of RHAMM, a hyaluronan-binding protein that regulates ras signaling, correlates with overexpression of mitogen-activated protein kinase and is a significant parameter in breast cancer progression. Clin Cancer Res 1998; 4: 567–76.

    CAS  PubMed  Google Scholar 

  44. Reeder JA, Gotley DC, Walsh MD et al. Expression of antisense CD44 variant 6 inhibits colorectal tumor metastasis and tumor growth in a wound environment. Cancer Res 1998; 58: 3719–26.

    CAS  PubMed  Google Scholar 

  45. Yamada Y, Itano N, Narimatsu H et al. RHAMM, Receptor for hyaluronan-mediated motility and CD44 expressions in colon cancer assessed by quantitative analysis using real time RT-PCR. Jpn J Cancer Res 1999; 90: 987–92.

    CAS  PubMed  Google Scholar 

  46. Yamada Y, Itano N, Narimatsu H et al. CD44 variant exon 6 expressions in colon cancer assessed by quantitative analysis using real time reverse transcriptase-polymerase chain reaction. Oncol Rep 2003; 10: 1919–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Itano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Itano, N., Narimatsu, H. et al. Elevated transcript level of hyaluronan synthase1 gene correlates with poor prognosis of human colon cancer. Clin Exp Metastasis 21, 57–63 (2004). https://doi.org/10.1023/B:CLIN.0000017203.71293.e0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CLIN.0000017203.71293.e0

Navigation